Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Mar;260(3 Pt 1):C555-61.
doi: 10.1152/ajpcell.1991.260.3.C555.

Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction

Affiliations

Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction

J H Youn et al. Am J Physiol. 1991 Mar.

Abstract

In this study we investigated the possibility that an increase in cytoplasmic Ca2+ concentration that is too low to cause muscle contraction can induce an increase in glucose transport activity in skeletal muscle. The compound N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), which induces Ca2+ release from the sarcoplasmic reticulum (SR), caused a dose-dependent increase in tension in rat epitrochlearis muscles at concentrations more than approximately 200 microM. Although 100 microM W-7 did not increase muscle tension, it accelerated loss of preloaded 45Ca2+. Glucose transport activity, measured with the nonmetabolizable glucose analogue 3-O-methylglucose, increased sixfold in muscles treated for 100 min with 50 microM W-7 (P less than 0.001) and eightfold in response to 100 microM W-7 (P less than 0.001). The increase in glucose transport activity was completely blocked with 25 microM cytochalasin B. There was no decrease in ATP or creatine phosphate concentrations ([approximately P]) in muscles incubated with 50 microM W-7. Dantrolene (25 microM), which blocks Ca2+ release from the SR, blocked the effects of W-7 both on 45Ca2+ release and on glucose transport activity. 9-Aminoacridine, another inhibitor of Ca2+ release from the SR, also blocked the stimulation of hexose transport by W-7. Caffeine, a compound structurally unrelated to W-7 that also releases Ca2+ from the SR, also increased glucose transport activity. Incubation of muscles with 3 mM caffeine for 30 min, which did not cause contraction or lower [approximately P], induced a threefold increase in 3-O-methylglucose transport (P less than 0.001). These results provide evidence suggesting that an increase in cytoplasmic Ca2+ too low to cause contraction or [approximately P] depletion can bring about an increase in glucose transport activity in skeletal muscle.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources