Cholinergic stimulation produces oscillations of cytosolic Ca2+ in a secretory epithelial cell line, T84
- PMID: 2003581
- DOI: 10.1152/ajpcell.1991.260.3.C598
Cholinergic stimulation produces oscillations of cytosolic Ca2+ in a secretory epithelial cell line, T84
Abstract
The effects of carbamylcholine (carbachol) on intracellular Ca2+ concentration ([Ca2+]c) of T84 cells were examined using the fluorescent Ca2+ indicator fura-2 and microfluorometric techniques. In single isolated cells, carbachol (100 microM) caused a rapid increase in [Ca2+]c of 184 +/- 15 nM (SE, n = 44) from a resting value of 56 +/- 7 nM. This initial transient was followed by a series of oscillations in 68% of the cells. Atropine (10 microM) blocked this response. Removal of bath Ca2+ did not inhibit the rise in [Ca2+]c or oscillations, but the response duration was shortened in 47% of the cells. The amplitude and latency of the initial Ca2+ rise, frequency of oscillations, and number of responding cells varied with the agonist concentration. We have previously shown that carbachol induces an oscillating K+ conductance in T84 cells [D. Devor, S. Simasko, and M. Duffey. Am. J. Physiol. 258 (Cell Physiol. 27): C318-C326, 1990]. Simultaneous measurement of membrane K+ current and fura-2 fluorescence in the same cell demonstrated a correlation between the rise in [Ca2+]c and increase in K+ current. These results show that a rise in [Ca2+]c and oscillations is likely to underlie the membrane K+ current responses to carbachol in T84 cells. Responses from a single cell within a subconfluent monolayer were different from those of isolated cells. In cells of a monolayer the initial [Ca2+]c rise (111 +/- 8 nM; n = 41) was followed by a decline to a stable plateau, and oscillations were not seen. Removal of bath Ca2+ both reduced the initial transient and eliminated the plateau phase of the response. These results suggest that cell-to-cell contact or differentiation during monolayer formation influences the Ca2+ handling mechanisms of T84 cells.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous