Traveling wave solutions from microscopic to macroscopic chemotaxis models
- PMID: 20037760
- DOI: 10.1007/s00285-009-0317-0
Traveling wave solutions from microscopic to macroscopic chemotaxis models
Abstract
In this paper, we study the existence and nonexistence of traveling wave solutions for the one-dimensional microscopic and macroscopic chemotaxis models. The microscopic model is based on the velocity jump process of Othmer et al. (SIAM J Appl Math 57:1044-1081, 1997). The macroscopic model, which can be shown to be the parabolic limit of the microscopic model, is the classical Keller-Segel model, (Keller and Segel in J Theor Biol 30:225-234; 377-380, 1971). In both models, the chemosensitivity function is given by the derivative of a potential function, Phi(v), which must be unbounded below at some point for the existence of traveling wave solutions. Thus, we consider two examples: Phi(v) = ln V and Phi(v) = ln[v/(1 - v)]. The mathematical problem reduces to proving the existence or nonexistence of solutions to a nonlinear boundary value problem with variable coefficient on R. The main purpose of this paper is to identify the relationships between the two models through their traveling waves, from which we can observe how information are lost, retained, or created during the transition from the microscopic model to the macroscopic model. Moreover, the underlying biological implications of our results are discussed.
Similar articles
-
Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic Keller-Segel systems with logistic source?J Math Biol. 2019 Sep;79(4):1455-1490. doi: 10.1007/s00285-019-01400-0. Epub 2019 Jul 19. J Math Biol. 2019. PMID: 31324959
-
Travelling waves in hyperbolic chemotaxis equations.Bull Math Biol. 2011 Aug;73(8):1695-733. doi: 10.1007/s11538-010-9586-4. Epub 2010 Oct 16. Bull Math Biol. 2011. PMID: 20953726
-
Derivation of a bacterial nutrient-taxis system with doubly degenerate cross-diffusion as the parabolic limit of a velocity-jump process.J Math Biol. 2019 May;78(6):1681-1711. doi: 10.1007/s00285-018-1323-x. Epub 2019 Jan 2. J Math Biol. 2019. PMID: 30603994
-
A user's guide to PDE models for chemotaxis.J Math Biol. 2009 Jan;58(1-2):183-217. doi: 10.1007/s00285-008-0201-3. Epub 2008 Jul 15. J Math Biol. 2009. PMID: 18626644 Review.
-
Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations.Bull Math Biol. 2008 Aug;70(6):1570-607. doi: 10.1007/s11538-008-9322-5. Epub 2008 Jul 19. Bull Math Biol. 2008. PMID: 18642047 Review.
Cited by
-
Travelling wave analysis in chemotaxis: case of starvation.Springerplus. 2016 Jun 29;5(1):917. doi: 10.1186/s40064-016-2507-8. eCollection 2016. Springerplus. 2016. PMID: 27386361 Free PMC article.
-
Bacterial chemotaxis without gradient-sensing.J Math Biol. 2015 May;70(6):1359-80. doi: 10.1007/s00285-014-0790-y. Epub 2014 May 28. J Math Biol. 2015. PMID: 24865467
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources