Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 5;167(2):329-42.
doi: 10.1016/j.neuroscience.2009.12.049. Epub 2009 Dec 28.

Dexamethasone attenuated bupivacaine-induced neuron injury in vitro through a threonine-serine protein kinase B-dependent mechanism

Affiliations

Dexamethasone attenuated bupivacaine-induced neuron injury in vitro through a threonine-serine protein kinase B-dependent mechanism

R Ma et al. Neuroscience. .

Abstract

Bupivacaine is one of the amide type local anesthetics and is widely used for epidural anesthesia and blockade of nerves. Bupivacaine administration locally could result in neuron injury showing transient neurologic symptoms. Dexamethasone is a synthetic glucocorticoid and may exert cytoprotective properties against damage induced by some stimuli. In the present study, we evaluated the effects of dexamethasone on bupivacaine-induced toxicity in mouse neuroblastoma N2a cells. N2a cells were exposed to bupivacaine in the presence or absence of dexamethasone. After treatment, the cell viability, nuclear condensation, and lactate dehydrogenase levels were evaluated. Mitochondrial potential and Akt (threonine-serine protein kinase B) activation were also examined. In a separate experiment, we examined the effect of Akt inhibition by triciribine on cell viability following dexamethasone treatment. We also investigated whether dexamethasone could prevent lidocaine-induced neurotoxicity. Treatment of N2a cells with bupivacaine resulted in significant cell injury as evidenced by morphological changes, LDH leakage, and nuclear condensation. Pretreatment of the cells with dexamethasone significantly attenuated bupivacaine- and lidocaine-induced cell injury. Dexamethasone treatment prevented the decline of mitochondrial potential caused by bupivacaine and increased the levels of Akt phosphorylation. Importantly, pharmacological inhibition of Akt abolished the protective effect of dexamethasone against bupivacaine-induced cell injury. Our data suggest that pretreatment of neuroblastoma cells with dexamethasone exerts a protective effect on bupivacaine-induced neuronal cell injury. The mechanisms involve activating the Akt signaling pathway.

PubMed Disclaimer

MeSH terms

LinkOut - more resources