Aminoguanidine inhibits aortic hydrogen peroxide production, VSMC NOX activity and hypercontractility in diabetic mice
- PMID: 20040119
- PMCID: PMC2811700
- DOI: 10.1186/1475-2840-8-65
Aminoguanidine inhibits aortic hydrogen peroxide production, VSMC NOX activity and hypercontractility in diabetic mice
Abstract
Background: Dysfunctionally uncoupled endothelial nitric oxide synthase (eNOS) is involved in producing reactive oxygen species (ROS) in the diabetic endothelium. The present study investigated whether anti-diabetes drug Aminoguanidine (AG) has any effect on eNOS function and vascular oxidant stress.
Methods and results: Blood glucose levels were increased to 452.0 +/- 15.1 mg/dl in STZ-treated male C57BL/6J mice (148.4 +/- 3.2 mg/dl in untreated controls). Aortic productions of NO* and O(2)*- were measured specifically and sensitively using electron spin resonance. Diabetic mice had a marked increase in aortic O(2)*- production. Aortic hydrogen peroxide (H(2)O(2)) production was also increased in diabetic aortas and significantly attenuated by AG. AG however had only a marginal effect in reducing aortic O(2)*- production, which corresponded to a minimal effect in improving aortic nitric oxide (NO*) bioavailability. The endothelium-dependent vasodilatation however was modestly but significantly improved by AG, likely consequent to AG-induced reduction in hyper-contractility. NAD(P)H oxidase (NOX)-dependent O(2)*- production was completely attenuated by AG in endothelium-denuded diabetic aortas.
Conclusion: In summary, despite that AG is not an effective eNOS recoupling agent presumably consequent to its ineffectiveness in preventing endothelial NOX activation, it is inhibitory of aortic H(2)O(2) production, VSMC NOX activity, and hypercontractility in diabetes.
Figures





References
-
- Paterson AD, Rutledge BN, Cleary PA, Lachin JM, Crow RS. The effect of intensive diabetes treatment on resting heart rate in type 1 diabetes: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study. Diabetes Care. 2007;30(8):2107–2112. doi: 10.2337/dc06-1441. - DOI - PMC - PubMed
-
- Rosen P, Nawroth PP, King G, Moller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev. 2001;17(3):189–212. doi: 10.1002/dmrr.196. - DOI - PubMed
-
- Sakai K, Matsumoto K, Nishikawa T, Suefuji M, Nakamaru K, Hirashima Y, Kawashima J, Shirotani T, Ichinose K, Brownlee M. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem Biophys Res Commun. 2003;300(1):216–222. doi: 10.1016/S0006-291X(02)02832-2. - DOI - PubMed