Multilocus sequence typing of Clostridium difficile
- PMID: 20042623
- PMCID: PMC2832416
- DOI: 10.1128/JCM.01796-09
Multilocus sequence typing of Clostridium difficile
Abstract
A robust high-throughput multilocus sequence typing (MLST) scheme for Clostridium difficile was developed and validated using a diverse collection of 50 reference isolates representing 45 different PCR ribotypes and 102 isolates from recent clinical samples. A total of 49 PCR ribotypes were represented overall. All isolates were typed by MLST and yielded 40 sequence types (STs). A web-accessible database was set up (http://pubmlst.org/cdifficile/) to facilitate the dissemination and comparison of C. difficile MLST genotyping data among laboratories. MLST and PCR ribotyping were similar in discriminatory abilities, having indices of discrimination of 0.90 and 0.92, respectively. Some STs corresponded to a single PCR ribotype (32/40), other STs corresponded to multiple PCR ribotypes (8/40), and, conversely, the PCR ribotype was not always predictive of the ST. The total number of variable nucleotide sites in the concatenated MLST sequences was 103/3,501 (2.9%). Concatenated MLST sequences were used to construct a neighbor-joining tree which identified four phylogenetic groups of STs and one outlier (ST-11; PCR ribotype 078). These groups apparently correlate with clades identified previously by comparative genomics. The MLST scheme was sufficiently robust to allow direct genotyping of C. difficile in total stool DNA extracts without isolate culture. The direct (nonculture) MLST approach may prove useful as a rapid genotyping method, potentially benefiting individual patients and informing hospital infection control.
Figures



Similar articles
-
Multilocus variable-number tandem-repeat analysis and multilocus sequence typing reveal genetic relationships among Clostridium difficile isolates genotyped by restriction endonuclease analysis.J Clin Microbiol. 2010 Feb;48(2):412-8. doi: 10.1128/JCM.01315-09. Epub 2009 Dec 2. J Clin Microbiol. 2010. PMID: 19955268 Free PMC article.
-
Comparison of strain typing results for Clostridium difficile isolates from North America.J Clin Microbiol. 2011 May;49(5):1831-7. doi: 10.1128/JCM.02446-10. Epub 2011 Mar 9. J Clin Microbiol. 2011. PMID: 21389155 Free PMC article.
-
Determining Clostridium difficile intra-taxa diversity by mining multilocus sequence typing databases.BMC Microbiol. 2017 Mar 14;17(1):62. doi: 10.1186/s12866-017-0969-7. BMC Microbiol. 2017. PMID: 28288567 Free PMC article.
-
Molecular epidemiology of predominant and emerging Clostridioides difficile ribotypes.J Microbiol Methods. 2020 Aug;175:105974. doi: 10.1016/j.mimet.2020.105974. Epub 2020 Jun 10. J Microbiol Methods. 2020. PMID: 32531232 Review.
-
Challenges for standardization of Clostridium difficile typing methods.J Clin Microbiol. 2013 Sep;51(9):2810-4. doi: 10.1128/JCM.00143-13. Epub 2013 Jun 19. J Clin Microbiol. 2013. PMID: 23784128 Free PMC article. Review.
Cited by
-
In vivo animal models confirm an increased virulence potential and pathogenicity of the NAP1/RT027/ST01 genotype within the Clostridium difficile MLST Clade 2.Gut Pathog. 2020 Sep 22;12:45. doi: 10.1186/s13099-020-00383-4. eCollection 2020. Gut Pathog. 2020. PMID: 32983262 Free PMC article.
-
Emergence of an outbreak-associated Clostridium difficile variant with increased virulence.J Clin Microbiol. 2015 Apr;53(4):1216-26. doi: 10.1128/JCM.03058-14. Epub 2015 Feb 4. J Clin Microbiol. 2015. PMID: 25653402 Free PMC article.
-
Culture-independent detection of low-abundant Clostridioides difficile in environmental DNA via PCR.Appl Environ Microbiol. 2024 Mar 20;90(3):e0127823. doi: 10.1128/aem.01278-23. Epub 2024 Feb 9. Appl Environ Microbiol. 2024. PMID: 38334406 Free PMC article.
-
CRISPR Diversity and Microevolution in Clostridium difficile.Genome Biol Evol. 2016 Sep 19;8(9):2841-55. doi: 10.1093/gbe/evw203. Genome Biol Evol. 2016. PMID: 27576538 Free PMC article.
-
Clostridium sordellii genome analysis reveals plasmid localized toxin genes encoded within pathogenicity loci.BMC Genomics. 2015 May 16;16(1):392. doi: 10.1186/s12864-015-1613-2. BMC Genomics. 2015. PMID: 25981746 Free PMC article.
References
-
- Bartlett, J. G. 2002. Clinical practice. Antibiotic-associated diarrhea. N. Engl. J. Med. 31:334-339. - PubMed
-
- Bartlett, J. G., and D. N. Gerding. 2008. Clinical recognition and diagnosis of Clostridium difficile infection. Clin. Infect. Dis. 46:S12-S18. - PubMed
-
- Braun, V., T. Hundsberger, P. Leukel, M. Sauerborn, and C. von Eichel-Streiber. 1996. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181:29-38. - PubMed
-
- Clabots, C. R., S. Johnson, K. M. Bettin, P. A. Mathie, M. E. Mulligan, D. R. Schaberg, L. R. Peterson, and D. N. Gerding. 1993. Development of a rapid and efficient restriction endonuclease analysis typing system for Clostridium difficile and correlation with other typing systems. J. Clin. Microbiol. 31:1870-1875. - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources