Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec 31;41(1):55.
doi: 10.1186/1297-9686-41-55.

Deregressing estimated breeding values and weighting information for genomic regression analyses

Affiliations

Deregressing estimated breeding values and weighting information for genomic regression analyses

Dorian J Garrick et al. Genet Sel Evol. .

Abstract

Background: Genomic prediction of breeding values involves a so-called training analysis that predicts the influence of small genomic regions by regression of observed information on marker genotypes for a given population of individuals. Available observations may take the form of individual phenotypes, repeated observations, records on close family members such as progeny, estimated breeding values (EBV) or their deregressed counterparts from genetic evaluations. The literature indicates that researchers are inconsistent in their approach to using EBV or deregressed data, and as to using the appropriate methods for weighting some data sources to account for heterogeneous variance.

Methods: A logical approach to using information for genomic prediction is introduced, which demonstrates the appropriate weights for analyzing observations with heterogeneous variance and explains the need for and the manner in which EBV should have parent average effects removed, be deregressed and weighted.

Results: An appropriate deregression for genomic regression analyses is EBV/r2 where EBV excludes parent information and r2 is the reliability of that EBV. The appropriate weights for deregressed breeding values are neither the reliability nor the prediction error variance, two alternatives that have been used in published studies, but the ratio (1 - h2)/[(c + (1 - r2)/r2)h2] where c > 0 is the fraction of genetic variance not explained by markers.

Conclusions: Phenotypic information on some individuals and deregressed data on others can be combined in genomic analyses using appropriate weighting.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–1829. - PMC - PubMed
    1. VanRaden PM, Wiggans GR. Derivation, calculation, and use of national animal model information. J Dairy Sci. 1991;74(8):2737–2746. http://www.hubmed.org/display.cgi?uids=1918547 - PubMed
    1. Morsci NMTJ, Schnabel RD. Association analysis of adinopectin and somatostatin polymorphisms on BTA1 with growth and carcass traits in Angus Association analysis of adinopectin and somatostatin polymorphisms on BTA1 with growth and carcass traits in Angus cattle. Anim Genet. 2006;37:554–562. doi: 10.1111/j.1365-2052.2006.01528.x. - DOI - PubMed
    1. Rodriguez-Zas SL, Southey BR, Heyen DW, Lewin HA. Interval and composite interval mapping of somatic cell score, yield, and components of milk in dairy cattle. J Dairy Sci. 2002;85(11):3081–3091. - PubMed
    1. Georges M, Nielsen D, Mackinnon M, Mishra A, Okimoto R, Pasquino AT, Sargeant LS, Sorensen A, Steele MR, Zhao X. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics. 1995;139(2):907–920. - PMC - PubMed

Publication types

Substances

LinkOut - more resources