Longitudinal changes in PON1 enzymatic activities in Mexican-American mothers and children with different genotypes and haplotypes
- PMID: 20045427
 - PMCID: PMC2846980
 - DOI: 10.1016/j.taap.2009.12.031
 
Longitudinal changes in PON1 enzymatic activities in Mexican-American mothers and children with different genotypes and haplotypes
Abstract
The paraoxonase 1 (PON1) enzyme prevents low-density lipoprotein oxidation and also detoxifies the oxon derivatives of certain neurotoxic organophosphate (OP) pesticides. PON1 activity in infants is low compared to adults, rendering them with lower metabolic and antioxidant capacities. We made a longitudinal comparison of the role of genetic variability on control of PON1 phenotypes in Mexican-American mothers and their children at the time of delivery (n=388 and 338, respectively) and again 7 years later (n=280 and 281, respectively) using generalized estimating equations models. At age 7, children's mean PON1 activities were still lower than those of mothers. This difference was larger in children with genotypes associated with low PON1 activities (PON1(-108TT), PON1(192QQ), and PON1(-909CC)). In mothers, PON1 activities were elevated at delivery and during pregnancy compared to 7 years later when they were not pregnant (p<0.001). In non-pregnant mothers, PON1 polymorphisms and haplotypes accounted for almost 2-fold more variation of arylesterase (AREase) and chlorpyrifos-oxonase (CPOase) activity than in mothers at delivery. In both mothers and children, the five PON1 polymorphisms (192, 55, -108, -909, -162) explained a noticeably larger proportion of variance of paraoxonase activity (62-78%) than AREase activity (12.3-26.6%). Genetic control of PON1 enzymatic activity varies in children compared to adults and is also affected by pregnancy status. In addition to known PON1 polymorphisms, unidentified environmental, genetic, or epigenetic factors may also influence variability of PON1 expression and therefore susceptibility to OPs and oxidative stress.
Copyright 2009 Elsevier Inc. All rights reserved.
Figures
              
              
              
              
                
                
                References
- 
    
- Aviram M, Rosenblat M. Paraoxonases 1, 2, and 3, oxidative stress, and macrophage foam cell formation during atherosclerosis development. Free Radic Biol Med. 2004;37:1304–1316. - PubMed
 
 - 
    
- Azarsiz E, Kayikcioglu M, Payzin S, Yildirim Sozmen E. PON1 activities and oxidative markers of LDL in patients with angiographically proven coronary artery disease. Int J Cardiol. 2003;91:43–51. - PubMed
 
 - 
    
- Barchowsky A, Klei LR, Dudek EJ, Swartz HM, James PE. Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med. 1999;27:1405–1412. - PubMed
 
 - 
    
- Bhattacharyya T, Nicholls SJ, Topol EJ, Zhang R, Yang X, Schmitt D, Fu X, Shao M, Brennan DM, Ellis SG, Brennan ML, Allayee H, Lusis AJ, Hazen SL. Relationship of paraoxonase 1 (PON1) gene polymorphisms and functional activity with systemic oxidative stress and cardiovascular risk. Jama. 2008;299:1265–1276. - PMC - PubMed
 
 - 
    
- Brackley M, Carro-Ciampi G, Stewart DJ, Lowden JA, Ray AK, Kalow W. Stability of the paraoxonase phenotyping ratio in collections of human sera with differing storage times. Res Commun Chem Pathol Pharmacol. 1983;41:65–78. - PubMed
 
 
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
