Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr;1803(4):452-67.
doi: 10.1016/j.bbamcr.2009.12.005. Epub 2010 Jan 4.

Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c

Affiliations
Free article

Statin-triggered cell death in primary human lung mesenchymal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c

Saeid Ghavami et al. Biochim Biophys Acta. 2010 Apr.
Free article

Abstract

Statins inhibit 3-hydroxy-3-methyl-glutarylcoenzyme CoA (HMG-CoA) reductase, the proximal enzyme for cholesterol biosynthesis. They exhibit pleiotropic effects and are linked to health benefits for diseases including cancer and lung disease. Understanding their mechanism of action could point to new therapies, thus we investigated the response of primary cultured human airway mesenchymal cells, which play an effector role in asthma and chronic obstructive lung disease (COPD), to simvastatin exposure. Simvastatin induced apoptosis involving caspase-9, -3 and -7, but not caspase-8 in airway smooth muscle cells and fibroblasts. HMG-CoA inhibition did not alter cellular cholesterol content but did abrogate de novo cholesterol synthesis. Pro-apoptotic effects were prevented by exogenous mevalonate, geranylgeranyl pyrophosphate and farnesyl pyrophosphate, downstream products of HMG-CoA. Simvastatin increased expression of Bax, oligomerization of Bax and Bak, and expression of BH3-only p53-dependent genes, PUMA and NOXA. Inhibition of p53 and silencing of p53 unregulated modulator of apoptosis (PUMA) expression partly counteracted simvastatin-induced cell death, suggesting a role for p53-independent mechanisms. Simvastatin did not induce mitochondrial release of cytochrome c, but did promote release of inhibitor of apoptosis (IAP) proteins, Smac and Omi. Simvastatin also inhibited mitochondrial fission with the loss of mitochondrial Drp1, an essential component of mitochondrial fission machinery. Thus, simvastatin activates novel apoptosis pathways in lung mesenchymal cells involving p53, IAP inhibitor release, and disruption of mitochondrial fission.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources