Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;61(5):410-8.
doi: 10.1016/j.phrs.2009.12.015. Epub 2010 Jan 4.

Alteration of cardiac cytochrome P450-mediated arachidonic acid metabolism in response to lipopolysaccharide-induced acute systemic inflammation

Affiliations

Alteration of cardiac cytochrome P450-mediated arachidonic acid metabolism in response to lipopolysaccharide-induced acute systemic inflammation

Anwar Anwar-mohamed et al. Pharmacol Res. 2010 May.

Abstract

Cytochrome P450 (CYP) generated cardioprotective metabolites, epoxyeicosatrienoic acids (EETs), and cardiotoxic metabolites, hydroxyeicosatetraenoic acids (HETEs) levels are determined by many factors, including the induction or repression of the CYP enzymes, responsible for their formation. Therefore, we examined the effect of acute inflammation on the expression of CYP epoxygenases and CYP omega-hydroxylases in the heart, kidney, and liver and the cardiac CYP-mediated arachidonic acid metabolism. For this purpose, male Sprague-Dawley rats were injected intraperitoneally with LPS (1mg/kg). After 6, 12, or 24h, the tissues were harvested and the expression of CYP genes and protein levels were determined using real time-PCR, and Western blot analyses, respectively. Arachidonic acid metabolites formations were determined by liquid chromatography-electron spray ionization-mass spectrometry LC-ESI-MS. Our results showed that inflammation significantly decreased the CYP epoxygenases expression in the heart, kidney and liver with a concomitant decrease in the EETs produced by these enzymes. In contrast to CYP expoxygenses, inflammation differentially altered CYP omega-hydroxylases expression with a significant increase in 20-HETE formation. The present study demonstrates for the first time that acute inflammation decreases CYP epoxygenases and their associated cardioprotective metabolites, EETs while on the other hand increases CYP omega-hydroxylases and their associated cardiotoxic metabolites, 20-HETE. These changes may be involved in the development and/or progression of cardiovascular diseases by inflammation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources