Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jan;130(1):29-42.
doi: 10.1248/yakushi.130.29.

[Analysis of aging-related oxidative stress status in normal aging animals and development of anti-aging interventions]

[Article in Japanese]
Affiliations
Free article
Review

[Analysis of aging-related oxidative stress status in normal aging animals and development of anti-aging interventions]

[Article in Japanese]
Toru Sasaki. Yakugaku Zasshi. 2010 Jan.
Free article

Abstract

Since Harman proposed the "free-radical theory of aging", oxidative stress is postulated to be a major causal factor of senescence. Accumulation of oxidative stress-induced oxidatively modified macromolecules including protein, DNA, and lipid, were found in tissues during the aging process. However, it is not necessarily clear which factor is more critical for an increase in endogenous reactive oxygen and/or decrease in antioxidative defense, to the age-related increase in oxidative damage. To clarify the production of reactive oxygen increasing with age, we examined reactive oxygen-dependent chemiluminescent (CL) signals in ex-vivo brain slices prepared from different aged animal brain during hypoxia-reoxygenation treatment using a novel photonic imaging method. CL signal was intensified during reoxygenation. The signals in SAMP10 (short life strain) and SAMR1 (control) brain slices increased with aging. The slope of increase of CL intensity with age in P10 was steeper than those in R1. Age-dependent increase of CL intensity was also observed in C57BL/6 mouse, Wistar rat, and pigeon. However, SOD activity in brain was not changed with age. These results suggest that reactive oxygen production itself increase with aging. The rate of age-related increase of CL intensity was inversely related to the maximum life span of the animals. We speculate that reactive oxygen may be a kind of signal for aging and its levels in tissue may determine the aging process and life span. To decelerate the age-related increases of reactive oxygen production is expected as a potent strategy for anti-aging interventions.

PubMed Disclaimer

Similar articles

Cited by

Substances