Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;50(10):1047-53.

Occurrence of antimicrobial resistant bacteria in healthy dogs and cats presented to private veterinary hospitals in southern Ontario: A preliminary study

Affiliations

Occurrence of antimicrobial resistant bacteria in healthy dogs and cats presented to private veterinary hospitals in southern Ontario: A preliminary study

Colleen Murphy et al. Can Vet J. 2009 Oct.

Abstract

The prevalence and patterns of antimicrobial susceptibility of fecal Escherichia coli, Salmonella spp., extended beta-lactamase producing E. coli (ESBL-E. coli), methicillin-resistant Staphylococcus aureus (MRSA), and methicillin-resistant Staphylococcus pseudintermedius (MRSP) were determined for healthy dogs (n = 188) and cats (n = 39) from veterinary hospitals in southern Ontario that had not had recent exposure to antimicrobials. The prevalence of antimicrobial resistance in E. coli was as follows: streptomycin (dogs - 17%, cats - 2%), ampicillin (dogs - 13%, cats - 4%), cephalothin (dogs - 13%, cats - < 1%), and tetracycline (dogs - 11%, cats - 2%). Eleven percent of dogs and 15% of cats had isolates that were resistant to at least 2 antimicrobials. Cephamycinase (CMY)-2 producing E. coli was cultured from 2 dogs. No Salmonella spp., ESBL-E. coli, MRSA, or MRSP isolates were recovered. The observed prevalence of resistance in commensal E. coli from this population was lower than that previously reported in companion animals, but a small percentage of dogs may be a reservoir for CMY-2 E. coli.

Fréquence des bactéries résistantes aux antimicrobiens chez les chiens et chats en santé présentés dans des cliniques vétérinaires privées du Sud de l’Ontario : Une étude préliminaire. La prévalence et les tendances de sensibilité antimicrobienne d’Escherichia coli d’origine fécale, de Salmonella spp., d’E. coli producteur de bêta-lactamase à spectre élargi (BLSE-E. coli), de Staphylococcus aureus résistant à la méthicilline (SARM) et de Staphylococcus pseudintermedius résistant à la méthicilline (SPRM) ont été déterminées chez des chiens (n = 188) et des chats en santé (n = 39) présentés dans des cliniques vétérinaires du Sud de l’Ontario et qui n’avaient pas été récemment exposés à des antimicrobiens. La prévalence de la résistance antimicrobienne pour E. coli était la suivante : streptomycine (chiens — 17 %, chats — 2 %), ampicilline (chiens — 13 %, chats — 4 %), céphalothine (chiens — 13 %, chats — < 1 %) et tétracycline (chiens — 11 %, chats — 2 %). Onze pour cent des chiens et 15 % des chats présentaient des isolats qui étaient résistants à au moins 2 antimicrobiens. L’E. coli producteur de céphamycinase (CMY)-2 a été cultivé à partir de 2 chiens. Aucun isolat de Salmonella spp., de BLSE-E. coli, de SARM ou de SPRM n’a été récupéré. La prévalence observée de résistance pour E. coli commensal de cette population était inférieure aux résultats qui avaient déjà été signalés pour les animaux de compagnie, mais un faible pourcentage de chiens peut représenter un réservoir de CMY-2 E. coli.

(Traduit par Isabelle Vallières)

PubMed Disclaimer

Figures

Figure 1
Figure 1
Number of phenotypically distinct antimicrobial susceptibility patterns among 5 commensal Escherichia coli isolates recovered from individual dog and cat fecal samples when the Kirby-Bauer disc diffusion method was used.
Figure 2
Figure 2
Percentage of dogs (n = 113) and cats (n = 39) with Escherichia coli isolates that were resistant to 2–8 antimicrobials when broth microdilutiona was used. a Susceptibility testing, using broth microdilution, was performed on presumptive ESBL E. coli isolates and commensal E. coli isolates that were classified as intermediate or resistant, using the Kirby-Bauer disc diffusion method.

Similar articles

Cited by

References

    1. Vengust M, Anderson ME, Rousseau J, Weese JS. Methicillin-resistant staphylococcal colonization in clinically normal dogs and horses in the community. Lett Appl Microbiol. 2006;43:602–606. - PubMed
    1. Moodley A, Stegger M, Bagcigil AF, et al. spa typing of methicillin-resistant Staphylococcus aureus isolated from domestic animals and veterinary staff in the UK and Ireland. J Antimicrob Chemother. 2006;58:1118–1123. - PubMed
    1. Authier S, Paquette D, Labrecque O, Messier S. Comparison of susceptibility to antimicrobials of bacterial isolates from companion animals in a veterinary diagnostic laboratory in Canada between 2 time points 10 years apart. Can Vet J. 2006;47:774–778. - PMC - PubMed
    1. Weese JS, Dick H, Willey BM, et al. Suspected transmission of methicillin-resistant Staphylococcus aureus between domestic pets and humans in veterinary clinics and in the household. Vet Microbiol. 2006;115:148–155. - PubMed
    1. De Graef EM, Decostere A, Devriese LA, Haesebrouck F. Antibiotic resistance among fecal indicator bacteria from healthy individually owned and kennel dogs. Microb Drug Resist. 2004;10:65–69. - PubMed

Publication types

MeSH terms

Substances