Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2010 Feb 23;118(10):607-15.
doi: 10.1042/CS20090568.

Fenofibrate improves endothelial function in the brachial artery and forearm resistance arterioles of statin-treated Type 2 diabetic patients

Affiliations
Randomized Controlled Trial

Fenofibrate improves endothelial function in the brachial artery and forearm resistance arterioles of statin-treated Type 2 diabetic patients

Sandra J Hamilton et al. Clin Sci (Lond). .

Abstract

Dyslipidaemia contributes to endothelial dysfunction and CVD (cardiovascular disease) in Type 2 diabetes mellitus. While statin therapy reduces CVD in these patients, residual risk remains high. Fenofibrate corrects atherogenic dyslipidaemia, but it is unclear whether adding fenofibrate to statin therapy lowers CVD risk. We investigated whether fenofibrate improves endothelial dysfunction in statin-treated Type 2 diabetic patients. In a cross-over study, 15 statin-treated Type 2 diabetic patients, with LDL (low-density lipoprotein)-cholesterol <2.6 mmol/l and endothelial dysfunction [brachial artery FMD (flow-mediated dilatation) <6.0%] were randomized, double-blind, to fenofibrate 145 mg/day or matching placebo for 12 weeks, with 4 weeks washout between treatment periods. Brachial artery FMD and endothelium-independent NMD (nitrate-mediated dilatation) were measured by ultrasonography at the start and end of each treatment period. PIFBF (post-ischaemic forearm blood flow), a measure of microcirculatory endothelial function, and serum lipids, lipoproteins and apo (apolipoprotein) concentrations were also measured. Compared with placebo, fenofibrate increased FMD (mean absolute 2.1+/-0.6 compared with -0.3+/-0.6%, P=0.04), but did not alter NMD (P=0.75). Fenofibrate also increased maximal PIFBF {median 3.5 [IQR (interquartile range) 5.8] compared with 0.3 (2.1) ml/100 ml/min, P=0.001} and flow debt repayment [median 1.0 (IQR 3.5) compared with -1.5 (3.0) ml/100 ml, P=0.01]. Fenofibrate lowered serum cholesterol, triacylgycerols (triglycerides), LDL-cholesterol, apoB-100 and apoC-III (P < or = 0.03), but did not alter HDL (high-density lipoprotein)-cholesterol or apoA-I. Improvement in FMD was inversely associated with on-treatment LDL-cholesterol (r=-0.61, P=0.02) and apoB-100 (r=-0.54, P=0.04) concentrations. Fenofibrate improves endothelial dysfunction in statin-treated Type 2 diabetic patients. This may relate partly to enhanced reduction in LDL-cholesterol and apoB-100 concentrations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources