Aquilegia as a model system for the evolution and ecology of petals
- PMID: 20047874
- PMCID: PMC2838260
- DOI: 10.1098/rstb.2009.0230
Aquilegia as a model system for the evolution and ecology of petals
Abstract
The ranunculid genus Aquilegia holds extraordinary promise as a model system for investigating a wide range of questions relating to the evolution and ecology of petals. New genetic and genomic resources, including an extensive EST database, BAC libraries and physical maps, as well as virus-induced gene silencing are facilitating this research on multiple fronts. At the developmental genetic level, Aquilegia has been important for elucidating the developmental programme for specifying petals and petaloid characteristics. Data suggest that duplication events among the petal and stamen identity genes have resulted in sub- and neofunctionalization. This expansion of gene function does not include the petaloidy of Aquilegia sepals, however, which does not depend on the same loci that control identity of the second whorl petals. Of special interest is the elaboration of the petal into a nectar spur, a major innovation for the genus. Intra- and interspecific variation in the shape and colour of petals, especially the spurs, has been shown to be adaptative for different pollinators. Thus, understanding the genetic basis of these traits will help us connect the ecological interactions driving speciation with the genetic changes responsible for remodelling morphology. Progress in this area has focused on the multiple, parallel transitions in flower colour and nectar spur length across the genus. For flower colour, upstream transcription factors appear to be primarily targets of natural selection. Thus research in Aquilegia spans the initial evolution of petals and petaloidy to the diversification of petal morphology to the ecological basis of petal form, thereby providing a comprehensive picture of the evolutionary biology of this critical angiosperm feature.
Figures






Similar articles
-
Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development.BMC Genomics. 2019 Aug 22;20(1):668. doi: 10.1186/s12864-019-6002-9. BMC Genomics. 2019. PMID: 31438840 Free PMC article.
-
Within and between whorls: comparative transcriptional profiling of Aquilegia and Arabidopsis.PLoS One. 2010 Mar 23;5(3):e9735. doi: 10.1371/journal.pone.0009735. PLoS One. 2010. PMID: 20352114 Free PMC article.
-
Evolution of spur-length diversity in Aquilegia petals is achieved solely through cell-shape anisotropy.Proc Biol Sci. 2012 Apr 22;279(1733):1640-5. doi: 10.1098/rspb.2011.1873. Epub 2011 Nov 16. Proc Biol Sci. 2012. PMID: 22090381 Free PMC article.
-
Understanding the development and evolution of novel floral form in Aquilegia.Curr Opin Plant Biol. 2014 Feb;17:22-7. doi: 10.1016/j.pbi.2013.10.006. Epub 2013 Nov 15. Curr Opin Plant Biol. 2014. PMID: 24507490 Review.
-
Evolution of petal identity.J Exp Bot. 2009;60(9):2517-27. doi: 10.1093/jxb/erp159. Epub 2009 May 14. J Exp Bot. 2009. PMID: 19443615 Review.
Cited by
-
Darwin and the evolution of flowers.Philos Trans R Soc Lond B Biol Sci. 2010 Feb 12;365(1539):347-50. doi: 10.1098/rstb.2009.0277. Philos Trans R Soc Lond B Biol Sci. 2010. PMID: 20047863 Free PMC article. No abstract available.
-
The complete chloroplast genome of Aquilegia barnebyi, a basal eudicot species.Mitochondrial DNA B Resour. 2020 Feb 6;5(1):1060-1061. doi: 10.1080/23802359.2020.1719919. Mitochondrial DNA B Resour. 2020. PMID: 33366874 Free PMC article.
-
Stamens enclosed by petals in Berchemia (Rhamnaceae): a unique mechanism for pollen presentation.Front Plant Sci. 2025 Jan 29;16:1525022. doi: 10.3389/fpls.2025.1525022. eCollection 2025. Front Plant Sci. 2025. PMID: 39944177 Free PMC article.
-
Comparative anatomy of the nectary spur in selected species of Aeridinae (Orchidaceae).Ann Bot. 2011 Mar;107(3):327-45. doi: 10.1093/aob/mcq246. Epub 2010 Dec 22. Ann Bot. 2011. PMID: 21183455 Free PMC article.
-
Delphinium as a model for development and evolution of complex zygomorphic flowers.Front Plant Sci. 2024 Aug 19;15:1453951. doi: 10.3389/fpls.2024.1453951. eCollection 2024. Front Plant Sci. 2024. PMID: 39224845 Free PMC article. Review.
References
-
- Abouheif E., Akam M., Dickinson W. J., Holland P. W. H., Meyer A., Patel N. H., Raff R. A., Roth V. L., Wray G. A.1997Homology and developmental genes. Trends Genet. 13, 432–433 (doi:10.1016/S0168-9525(97)01271-7) - DOI - PubMed
-
- Abzhanov A., Extavour C. G., Groover A., Hodges S. A., Hoekstra H. E., Kramer E. M., Monteiro A.2008Are we there yet? Tracking the development of new model systems. Trends Genet. 24, 353–360 (doi:10.1016/j.tig.2008.04.002) - DOI - PubMed
-
- APG 2003An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141, 399–436 (doi:10.1046/j.1095-8339.2003.t01-1-00158.x) - DOI
-
- Baum D. A., Whitlock B. A.1999Genetic clues to petal evolution. Curr. Biol. 9, 525–527 - PubMed
-
- Becker A., Theissen G.2003The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29, 464–489 (doi:10.1016/S1055-7903(03)00207-0) - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials