(124)I-iodopyridopyrimidinone for PET of Abl kinase-expressing tumors in vivo
- PMID: 20048131
- PMCID: PMC4432838
- DOI: 10.2967/jnumed.109.066126
(124)I-iodopyridopyrimidinone for PET of Abl kinase-expressing tumors in vivo
Abstract
Because of the recent development of an iodopyridopyrimidinone Abl protein kinase inhibitor (PKI), (124)I-SKI-212230 ((124)I-SKI230), we investigated the feasibility of a PET-based molecular imaging method for the direct visualization of Abl kinase expression and PKI treatment.
Methods: In vitro pharmacokinetic properties, including specific and nonspecific binding of (124)I-SKI230 to its Abl kinase target and interaction with other PKIs, were assessed in cell-free medium and chronic myelogenous leukemia (CML) cells overexpressing BCR-Abl (K562), in comparison with BT-474 cells that are low in Abl expression. In a xenograft tumor model, we assessed the in vivo pharmacokinetics of (124)I-SKI230 using PET and postmortem tissue sampling. We also tested a paradigm of (124)I-SKI230 PET after treatment of the animal with a dose of Abl-specific PKI for the monitoring of the tumor response.
Results: In vitro studies confirmed that SKI230 binds to Abl kinase with nanomolar affinity, that selective uptake occurs in cell lines known to express Abl kinase, that RNAi knock-down supports specificity of cellular uptake due to Abl kinase, and that imatinib, an archetype Abl PKI, completely displaces SKI230. With SKI230, we obtained successful in vivo PET of Abl-expressing human tumors in a nude rat. We were also able to demonstrate evidence of substrate inhibition of in vivo radiotracer uptake in the xenograft tumor after treatment of the animal as a model of PKI treatment monitoring.
Conclusion: These results support the hypothesis that molecular imaging using PET will be useful for the study of in vivo pharmacodynamics of Abl PKI molecular therapy in humans.
Figures
References
-
- Ross JS, Fletcher JA. The HER-2/neu oncogene in breast cancer: prognostic factor, predictive factor, and target for therapy. Stem Cells. 1998;16:413–428. - PubMed
-
- Galimberti S, Cervetti G, Guerrini F, et al. Quantitative molecular monitoring of BCR-ABL and MDR1 transcripts in patients with chronic myeloid leukemia during imatinib treatment. Cancer Genet Cytogenet. 2005;162:57–62. - PubMed
-
- Shu HK, Pelley RJ, Kung HJ. Tissue-specific transformation by epidermal growth factor receptor: a single point mutation within the ATP-binding pocket of the erbB product increases its intrinsic kinase activity and activates its sarcomagenic potential. Proc Natl Acad Sci U S A. 1990 Dec;87:9103–9107. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous