Reconstructing transcriptional regulatory networks through genomics data
- PMID: 20048387
- PMCID: PMC3666560
- DOI: 10.1177/0962280209351890
Reconstructing transcriptional regulatory networks through genomics data
Abstract
One central problem in biology is to understand how gene expression is regulated under different conditions. Microarray gene expression data and other high throughput data have made it possible to dissect transcriptional regulatory networks at the genomics level. Owing to the very large number of genes that need to be studied, the relatively small number of data sets available, the noise in the data and the different natures of the distinct data types, network inference presents great challenges. In this article, we review statistical and computational methods that have been developed in the last decade in response to genomics data for inferring transcriptional regulatory networks.
Similar articles
-
MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.BMC Syst Biol. 2018 Dec 14;12(Suppl 7):115. doi: 10.1186/s12918-018-0635-1. BMC Syst Biol. 2018. PMID: 30547796 Free PMC article.
-
Integration of steady-state and temporal gene expression data for the inference of gene regulatory networks.PLoS One. 2013 Aug 14;8(8):e72103. doi: 10.1371/journal.pone.0072103. eCollection 2013. PLoS One. 2013. PMID: 23967277 Free PMC article.
-
Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.Genome Res. 2012 Jul;22(7):1334-49. doi: 10.1101/gr.127191.111. Epub 2012 Mar 28. Genome Res. 2012. PMID: 22456606 Free PMC article.
-
Computational and experimental approaches for modeling gene regulatory networks.Curr Pharm Des. 2007;13(14):1415-36. doi: 10.2174/138161207780765945. Curr Pharm Des. 2007. PMID: 17504165 Review.
-
Inferring regulatory networks.Front Biosci. 2008 Jan 1;13:263-75. doi: 10.2741/2677. Front Biosci. 2008. PMID: 17981545 Review.
Cited by
-
Benchmarking transcription factor binding site prediction models: a comparative analysis on synthetic and biological data.Brief Bioinform. 2025 Jul 2;26(4):bbaf363. doi: 10.1093/bib/bbaf363. Brief Bioinform. 2025. PMID: 40702706 Free PMC article.
-
Hierarchical transcription factor and regulatory network for drought response in Betula platyphylla.Hortic Res. 2022 Feb 19;9:uhac040. doi: 10.1093/hr/uhac040. Online ahead of print. Hortic Res. 2022. PMID: 35184174 Free PMC article.
-
SPONGEdb: a pan-cancer resource for competing endogenous RNA interactions.NAR Cancer. 2021 Jan 6;3(1):zcaa042. doi: 10.1093/narcan/zcaa042. eCollection 2021 Mar. NAR Cancer. 2021. PMID: 34316695 Free PMC article.
-
Efficient proximal gradient algorithm for inference of differential gene networks.BMC Bioinformatics. 2019 May 2;20(1):224. doi: 10.1186/s12859-019-2749-x. BMC Bioinformatics. 2019. PMID: 31046666 Free PMC article.
-
Microarray and Single-Cell RNA Sequencing Reveals G-Protein Gene Expression Signatures of Spermatogonia Stem Cell.Stem Cell Rev Rep. 2025 Jul 22. doi: 10.1007/s12015-025-10942-4. Online ahead of print. Stem Cell Rev Rep. 2025. PMID: 40694278
References
-
- Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128(4):707–719. - PubMed
-
- Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature. 2001;409(6819):533–538. - PubMed
-
- Ren B, Robert F, Wyrick JJ, et al. Genome-wide location and function of DNA binding proteins. Science. 2000;290(5500):2306–2309. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources