Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan 28;114(3):1447-53.
doi: 10.1021/jp908810a.

Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase

Affiliations

Identification of amino acids responsible for processivity in a Family 1 carbohydrate-binding module from a fungal cellulase

Gregg T Beckham et al. J Phys Chem B. .

Abstract

We probe the molecular-level behavior of the Family 1 carbohydrate-binding module (CBM) from a commonly studied fungal cellulase, the Family 7 cellobiohydrolase (Cel7A) from Trichoderma reesei, on the hydrophobic face of crystalline cellulose. With a fully atomistic model, we predict that the CBM alone exhibits regions of thermodynamic stability along a cellulose chain corresponding to a cellobiose unit, which is the catalytic product of the entire Cel7A enzyme. In addition, we determine which residues and the types of interactions that are responsible for the observed processivity length scale of the CBM: Y5, Q7, N29, and Y32. These results imply that the CBM can anchor the Cel7A enzyme at discrete points along a cellulose chain and thus aid in both recognizing cellulose chain ends for initial attachment to cellulose as well as aid in enzymatic catalysis by diffusing between stable wells on a length scale commensurate with the catalytic, processive cycle of Cel7A during cellulose hydrolysis. Comparison of other Family 1 CBMs show high functional homology to the four amino acids responsible for the processivity length scale on the surface of crystalline cellulose, which suggests that Family 1 CBMs may generally employ this type of approach for translation on the cellulose surface. Overall, this work provides further insight into the molecular-level mechanisms by which a CBM recognizes and interacts with cellulose.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources