Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May;33(5):840-50.
doi: 10.1111/j.1365-3040.2009.02110.x. Epub 2009 Dec 30.

Modelling hydration and photosystem II activation in relation to in situ rain and humidity patterns: a tool to compare performance of rare and generalist epiphytic lichens

Affiliations
Free article

Modelling hydration and photosystem II activation in relation to in situ rain and humidity patterns: a tool to compare performance of rare and generalist epiphytic lichens

Anna V Jonsson Cabrajić et al. Plant Cell Environ. 2010 May.
Free article

Abstract

A dynamic water and activity model was developed to assess how efficiently lichens can exploit in situ rain and humid air. The capacity to rehydrate and activate photosynthesis [i.e. photosystem II (PSII)] by these water sources was compared among four hydrophilic and one generalist epiphytic lichen. Hydration status, potential (instant activation) and realized (delayed activation) day-light activity were simulated using a model based on species-specific hydration, PSII activation characteristics and in situ water content for Platismatia norvegica in three microclimatic scenarios. The results showed that delayed PSII activation could have profound effects on lichens' ability to exploit environmental water sources. During rain, realized activity was reduced by 19, 34 and 56% compared to simulations assuming instant activation for three hydrophilic lichens in the driest microclimate. During humid air, the reduction was 81% for the most extreme species and scenario, because of slow hydration and low equilibrium water content. Many and brief hydration events may thus hamper species with slow activation and fast desiccation kinetics. No evidence of compensation by a 'water-holding' morphology was observed among studied species. The developed model may provide a tool for identifying suitable habitats for long-term persistence of lichens with physiological constraints.

PubMed Disclaimer

Publication types

LinkOut - more resources