Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing
- PMID: 20052144
- PMCID: PMC2860178
- DOI: 10.1364/OE.17.024342
Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing
Abstract
A new waveguide design for an optofluidic chip is presented. It mitigates multi-mode behavior in solid and liquid-core waveguides by increasing fundamental mode coupling to 82% and 95%, respectively. Additionally, we demonstrate a six-fold improvement in lateral confinement of optically guided dielectric microparticles and double the detection efficiency of fluorescent particles.
Figures








Similar articles
-
Label-free detection with the liquid core optical ring resonator sensing platform.Methods Mol Biol. 2009;503:139-65. doi: 10.1007/978-1-60327-567-5_7. Methods Mol Biol. 2009. PMID: 19151939 Free PMC article.
-
Nanoporous polymer ring resonators for biosensing.Opt Express. 2012 Jan 2;20(1):245-55. doi: 10.1364/OE.20.000245. Opt Express. 2012. PMID: 22274347 Free PMC article.
-
Analysis of integrated optofluidic lab-on-a-chip fluorescence biosensor based on transmittance of light through a fluidic gap.Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:30-4. doi: 10.1109/IEMBS.2011.6089889. Annu Int Conf IEEE Eng Med Biol Soc. 2011. PMID: 22254243
-
Overview of the optofluidic ring resonator: a versatile platform for label-free biological and chemical sensing.Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1042-4. doi: 10.1109/IEMBS.2009.5335153. Annu Int Conf IEEE Eng Med Biol Soc. 2009. PMID: 19965134 Review.
-
Applications and developments of on-chip biochemical sensors based on optofluidic photonic crystal cavities.Lab Chip. 2017 Dec 19;18(1):57-74. doi: 10.1039/c7lc00641a. Lab Chip. 2017. PMID: 29125166 Review.
Cited by
-
Dynamic manipulation of particles via transformative optofluidic waveguides.Sci Rep. 2015 Oct 16;5:15170. doi: 10.1038/srep15170. Sci Rep. 2015. PMID: 26471003 Free PMC article.
-
Tailorable integrated optofluidic filters for biomolecular detection.Lab Chip. 2011 Mar 7;11(5):899-904. doi: 10.1039/c0lc00496k. Epub 2011 Jan 10. Lab Chip. 2011. PMID: 21221449 Free PMC article.
-
Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-based SiO2 Waveguides.IEEE J Sel Top Quantum Electron. 2016 Nov-Dec;22(6):10.1109/JSTQE.2016.2549801. doi: 10.1109/JSTQE.2016.2549801. Epub 2016 Apr 21. IEEE J Sel Top Quantum Electron. 2016. PMID: 27547024 Free PMC article.
-
Hybrid Dielectric-loaded Nanoridge Plasmonic Waveguide for Low-Loss Light Transmission at the Subwavelength Scale.Sci Rep. 2017 Jan 16;7:40479. doi: 10.1038/srep40479. Sci Rep. 2017. PMID: 28091583 Free PMC article.
-
Optofluidics incorporating actively controlled micro- and nano-particles.Biomicrofluidics. 2012 Jul 18;6(3):31501. doi: 10.1063/1.4736796. Print 2012 Sep. Biomicrofluidics. 2012. PMID: 23864925 Free PMC article.
References
-
- Psaltis D, Quake SR, Yang C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature. 2006;442(7101):381–386. - PubMed
-
- Monat C, Domachuk P, Eggleton B. Integrated optofluidics: A new river of light. Nat Photonics. 2007;1(2):106–114.
-
- Bernini R, Campopiano S, Zeni L, Sarro PM. ARROW optical waveguide based sensors. Sens Actuators B Chem. 2004;100(1–2):143–146.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources