K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants
- PMID: 20054030
- DOI: 10.1093/jxb/erp379
K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants
Abstract
The effect of water stress on stomatal closure in sunflower plants has been found to be dependent on K(+) nutrient status. When plants with different internal K(+) content were subjected to a water-stress period, stomatal conductance was reduced more markedly in plants with an adequate K(+) supply than in K(+)-starved plants. K(+) starvation promoted the production of ethylene by detached leaves, as well as by the shoot of whole plants. Water stress had no significant effect on this synthesis. The effect on stomatal conductance of adding 5 microM cobalt (an ethylene synthesis inhibitor) to the growing medium of plants subjected to water stress was also dependent on their K(+) nutritional status: conductance was not significantly affected in normal K(+) plants whereas it was reduced in K(+)-starved plants. Cobalt had no harmful effects on growth, and did not alter the internal K(+) content in the plants. These results suggest that ethylene may play a role in the inhibiting effect of K(+) starvation on stomatal closure.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical