Automated detection of tuberculosis in Ziehl-Neelsen-stained sputum smears using two one-class classifiers
- PMID: 20055923
- PMCID: PMC2825536
- DOI: 10.1111/j.1365-2818.2009.03308.x
Automated detection of tuberculosis in Ziehl-Neelsen-stained sputum smears using two one-class classifiers
Abstract
Screening for tuberculosis in high-prevalence countries relies on sputum smear microscopy. We present a method for the automated identification of Mycobacterium tuberculosis in images of Ziehl-Neelsen-stained sputum smears obtained using a bright-field microscope. We use two stages of classification. The first comprises a one-class pixel classifier for object segmentation. Geometric transformation invariant features are extracted for implementation of the second stage, namely one-class object classification. Different classifiers are compared; the sensitivity of all tested classifiers is above 90% for the identification of a single bacillus object using all extracted features. The mixture of Gaussians classifier performed well in both stages of classification. This method may be used as a step in the automation of tuberculosis screening, in order to reduce technician involvement in the process.
Figures




Similar articles
-
Classification of Mycobacterium tuberculosis in images of ZN-stained sputum smears.IEEE Trans Inf Technol Biomed. 2010 Jul;14(4):949-57. doi: 10.1109/TITB.2009.2028339. Epub 2009 Sep 1. IEEE Trans Inf Technol Biomed. 2010. PMID: 19726269 Free PMC article.
-
Automated focusing in bright-field microscopy for tuberculosis detection.J Microsc. 2010 Nov;240(2):155-63. doi: 10.1111/j.1365-2818.2010.03389.x. J Microsc. 2010. PMID: 20946382 Free PMC article.
-
A sputum smear microscopy image database for automatic bacilli detection in conventional microscopy.Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2841-4. doi: 10.1109/EMBC.2014.6944215. Annu Int Conf IEEE Eng Med Biol Soc. 2014. PMID: 25570583
-
Agreement between Direct Fluorescent Microscopy and Ziehl-Neelsen Concentration Techniques in Detection of Pulmonary Tuberculosis in Northwest Ethiopia.Ethiop J Health Sci. 2017 Sep;27(5):459-464. doi: 10.4314/ejhs.v27i5.3. Ethiop J Health Sci. 2017. PMID: 29217950 Free PMC article.
-
Rats sniff out pulmonary tuberculosis from sputum: a diagnostic accuracy meta-analysis.Sci Rep. 2021 Jan 21;11(1):1877. doi: 10.1038/s41598-021-81086-x. Sci Rep. 2021. PMID: 33479276 Free PMC article.
Cited by
-
A Review of Automatic Methods Based on Image Processing Techniques for Tuberculosis Detection from Microscopic Sputum Smear Images.J Med Syst. 2016 Jan;40(1):17. doi: 10.1007/s10916-015-0388-y. Epub 2015 Oct 30. J Med Syst. 2016. PMID: 26573654 Review.
-
Ziehl-Neelsen sputum smear microscopy image database: a resource to facilitate automated bacilli detection for tuberculosis diagnosis.J Med Imaging (Bellingham). 2017 Apr;4(2):027503. doi: 10.1117/1.JMI.4.2.027503. Epub 2017 Jun 30. J Med Imaging (Bellingham). 2017. PMID: 28680911 Free PMC article.
-
Creating a virtual slide map from sputum smear images for region-of-interest localisation in automated microscopy.Comput Methods Programs Biomed. 2012 Oct;108(1):38-52. doi: 10.1016/j.cmpb.2011.12.017. Epub 2012 Jan 17. Comput Methods Programs Biomed. 2012. PMID: 22257649 Free PMC article.
-
A state-of-the-art survey of object detection techniques in microorganism image analysis: from classical methods to deep learning approaches.Artif Intell Rev. 2023;56(2):1627-1698. doi: 10.1007/s10462-022-10209-1. Epub 2022 Jun 7. Artif Intell Rev. 2023. PMID: 35693000 Free PMC article.
-
Automatic microscopic detection of mycobacteria in sputum: a proof-of-concept.Sci Rep. 2018 Jul 27;8(1):11308. doi: 10.1038/s41598-018-29660-8. Sci Rep. 2018. PMID: 30054578 Free PMC article.
References
-
- Bishop C. Neural Networks for Pattern Recognition. Oxford University Press; Oxford: 1995.
-
- Bishop C. Novelty detection and neural network validation. IEE Proceedings on Vision, Image and Signal Processing. Special Issue on Applications of Neural Networks. 1994;141:217–222.
-
- Duda R, Hart P, Stork D. Pattern Classification. John Wiley; New York: 2001.
-
- Forero M, Cristobal G, Desco M. Automatic identification of Mycobacterium Tuberculosis by Gaussian mixture models. Journal of Microscopy. 2006;223:120–132. - PubMed
-
- Franco A, Lumini A, Maio D, Nanni L. An enhanced subspace method for face recognition. Pattern Recognition Letters. 2006;27:76–84.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources