Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 15;177(1-3):323-30.
doi: 10.1016/j.jhazmat.2009.12.035. Epub 2010 Jan 6.

"In situ" phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria

Affiliations

"In situ" phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria

M Dary et al. J Hazard Mater. .

Abstract

The aim of this work is the evaluation of metal phytostabilisation potential of Lupinus luteus inoculated with Bradyrhizobium sp. 750 and heavy metal resistant PGPRs (plant-growth promoting rhizobacteria), for in situ reclamation of multi-metal contaminated soil after a mine spill. Yellow lupines accumulated heavy metals mainly in roots (Cu, Cd and especially Pb were poorly translocated to shoots). This indicates a potential use of this plant in metal phytostabilisation. Furthermore, As accumulation was undetectable. On the other hand, zinc accumulation was 10-100 times higher than all other metals, both in roots and in shoots. Inoculation with Bradyrhizobium sp. 750 increased both biomass and nitrogen content, indicating that nitrogen fixation was effective in soils with moderate levels of contamination. Co-inoculation of lupines with a consortium of metal resistant PGPR (including Bradyrhizobium sp., Pseudomonas sp. and Ochrobactrum cytisi) produced an additional improvement of plant biomass. At the same time, a decrease in metal accumulation was observed, both in shoots and roots, which could be due to a protective effect exerted on plant rhizosphere. Our results indicate the usefulness of L. luteus inoculated with a bacterial consortium of metal resistant PGPRs as a method for in situ reclamation of metal polluted soils.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources