Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 2;106(6):1134-44.
doi: 10.1161/CIRCRESAHA.109.203836. Epub 2010 Jan 7.

CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation

Affiliations
Free article

CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation

Stefan Neef et al. Circ Res. .
Free article

Abstract

Rationale: Although research suggests that diastolic Ca(2+) levels might be increased in atrial fibrillation (AF), this hypothesis has never been tested. Diastolic Ca(2+) leak from the sarcoplasmic reticulum (SR) might increase diastolic Ca(2+) levels and play a role in triggering or maintaining AF by transient inward currents through Na(+)/Ca(2+) exchange. In ventricular myocardium, ryanodine receptor type 2 (RyR2) phosphorylation by Ca(2+)/calmodulin-dependent protein kinase (CaMK)II is emerging as an important mechanism for SR Ca(2+) leak.

Objective: We tested the hypothesis that CaMKII-dependent diastolic SR Ca(2+) leak and elevated diastolic Ca(2+) levels occurs in atrial myocardium of patients with AF.

Methods and results: We used isolated human right atrial myocytes from patients with AF versus sinus rhythm and found CaMKII expression to be increased by 40+/-14% (P<0.05), as well as CaMKII phosphorylation by 33+/-12% (P<0.05). This was accompanied by a significantly increased RyR2 phosphorylation at the CaMKII site (Ser2814) by 110+/-53%. Furthermore, cytosolic Ca(2+) levels were elevated during diastole (229+/-20 versus 164+/-8 nmol/L, P<0.05). Most likely, this resulted from an increased SR Ca(2+) leak in AF (P<0.05), which was not attributable to higher SR Ca(2+) load. Tetracaine experiments confirmed that SR Ca(2+) leak through RyR2 leads to the elevated diastolic Ca(2+) level. CaMKII inhibition normalized SR Ca(2+) leak and cytosolic Ca(2+) levels without changes in L-type Ca(2+) current.

Conclusion: Increased CaMKII-dependent phosphorylation of RyR2 leads to increased SR Ca(2+) leak in human AF, causing elevated cytosolic Ca(2+) levels, thereby providing a potential arrhythmogenic substrate that could trigger or maintain AF.

PubMed Disclaimer

Publication types

MeSH terms