Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr;38(1):59-67.
doi: 10.1016/j.nbd.2009.12.027. Epub 2010 Jan 11.

Striatal inhibition of PKA prevents levodopa-induced behavioural and molecular changes in the hemiparkinsonian rat

Affiliations

Striatal inhibition of PKA prevents levodopa-induced behavioural and molecular changes in the hemiparkinsonian rat

Manon Lebel et al. Neurobiol Dis. 2010 Apr.

Abstract

l-3,4-dihydroxyphenylalanine methyl ester hydrochloride (l-DOPA) is the gold standard for symptomatic treatment of Parkinson's disease (PD), but long-term therapy is associated with the emergence of abnormal involuntary movements (AIMS) known as l-DOPA-induced dyskinesias (LID). The molecular changes underlying LID are not completely understood. Using the 6-hydroxydopamine-lesioned rat model of PD, we showed that l-DOPA elicits profound alterations in the activity of three LID molecular markers, namely DeltaFosB, dopamine, cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and extracellular signal-regulated kinases 1 and 2 (ERK1/2), as well as in phosphorylation levels of the cytoskeletal-associated protein tau. These modifications are triggered by protein kinase A (PKA) activation and intermittent stimulation of dopamine receptors as they are totally prevented by intrastriatal injections of Rp-cAMPS, a PKA inhibitor, or by continuous administration of l-DOPA via subcutaneous mini-pump. Importantly, Rp-cAMPS does not modulate the positive effect of l-DOPA on locomotor deficits and significantly attenuates the emergence of AIMS in 6-hydroxydopamine hydrobromide-lesioned rats. Even if decreased PKA signalling in the striatum may represent a clinical challenge, these data provide novel evidence that PKA activation, through modification of striatal signalling and alterations of cytoskeletal constituents, plays a key role in the manifestation of LID.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources