Toward the dynamic interactome: it's about time
- PMID: 20061351
- PMCID: PMC2810115
- DOI: 10.1093/bib/bbp057
Toward the dynamic interactome: it's about time
Abstract
Dynamic molecular interactions play a central role in regulating the functioning of cells and organisms. The availability of experimentally determined large-scale cellular networks, along with other high-throughput experimental data sets that provide snapshots of biological systems at different times and conditions, is increasingly helpful in elucidating interaction dynamics. Here we review the beginnings of a new subfield within computational biology, one focused on the global inference and analysis of the dynamic interactome. This burgeoning research area, which entails a shift from static to dynamic network analysis, promises to be a major step forward in our ability to model and reason about cellular function and behavior.
Similar articles
-
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2. Phys Biol. 2013. PMID: 23912807
-
Interactome mapping for analysis of complex phenotypes: insights from benchmarking binary interaction assays.Proteomics. 2012 May;12(10):1499-518. doi: 10.1002/pmic.201100598. Proteomics. 2012. PMID: 22589225 Review.
-
Interactome: gateway into systems biology.Hum Mol Genet. 2005 Oct 15;14 Spec No. 2:R171-81. doi: 10.1093/hmg/ddi335. Epub 2005 Sep 14. Hum Mol Genet. 2005. PMID: 16162640 Review.
-
Identification of functional hubs and modules by converting interactome networks into hierarchical ordering of proteins.BMC Bioinformatics. 2010 Apr 29;11 Suppl 3(Suppl 3):S3. doi: 10.1186/1471-2105-11-S3-S3. BMC Bioinformatics. 2010. PMID: 20438650 Free PMC article.
-
Biological Network Inference and analysis using SEBINI and CABIN.Methods Mol Biol. 2009;541:551-76. doi: 10.1007/978-1-59745-243-4_24. Methods Mol Biol. 2009. PMID: 19381531 Review.
Cited by
-
Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes.Mol Cell Proteomics. 2010 Sep;9(9):1849-65. doi: 10.1074/mcp.M110.000406. Epub 2010 May 10. Mol Cell Proteomics. 2010. PMID: 20460255 Free PMC article.
-
Spatiotemporal positioning of multipotent modules in diverse biological networks.Cell Mol Life Sci. 2014 Jul;71(14):2605-24. doi: 10.1007/s00018-013-1547-2. Epub 2014 Jan 11. Cell Mol Life Sci. 2014. PMID: 24413666 Free PMC article. Review.
-
Exploring dynamic protein-protein interactions in cassava through the integrative interactome network.Sci Rep. 2020 Apr 16;10(1):6510. doi: 10.1038/s41598-020-63536-0. Sci Rep. 2020. PMID: 32300157 Free PMC article.
-
Introducing the novel Cytoscape app TimeNexus to analyze time-series data using temporal MultiLayer Networks (tMLNs).Sci Rep. 2021 Jul 1;11(1):13691. doi: 10.1038/s41598-021-93128-5. Sci Rep. 2021. PMID: 34211067 Free PMC article.
-
Comparing signaling networks between normal and transformed hepatocytes using discrete logical models.Cancer Res. 2011 Aug 15;71(16):5400-11. doi: 10.1158/0008-5472.CAN-10-4453. Epub 2011 Jul 8. Cancer Res. 2011. PMID: 21742771 Free PMC article.
References
-
- Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature. 2000;403:623–7. - PubMed
-
- Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002;415:180–3. - PubMed
-
- Gavin AC, Aloy P, Grandi P, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature. 2006;440:631–6. - PubMed
-
- Krogan NJ, Cagney G, Yu H, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 2006;440:637–43. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources