DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies
- PMID: 2006180
- PMCID: PMC51243
- DOI: 10.1073/pnas.88.6.2417
DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies
Abstract
Classical genetic selection was combined with site-directed mutagenesis to study bacteriophage T4 DNA polymerase 3'----5' exonuclease activity. A mutant DNA polymerase with very little (less than or equal to 1%) 3'----5' exonuclease activity was generated. In vivo, the 3'----5' exonuclease-deficient DNA polymerase produced the highest level of spontaneous mutation observed in T4, 500- to 1800-fold above that of wild type. The large reduction in 3'----5' exonuclease activity appears to be due to two amino acid substitutions: Glu-191 to Ala and Asp-324 to Gly. Protein sequence similarities have been observed between sequences in the Escherichia coli DNA polymerase I 3'----5' exonuclease domain and conserved sequences in eukaryotic, viral, and phage DNA polymerases. It has been proposed that the conserved sequences contain metal ion binding ligands that are required for 3'----5' exonuclease activity; however, we find that some proposed T4 DNA polymerase metal binding residues are not essential for 3'----5' exonuclease activity. Thus, our T4 DNA polymerase studies do not support the hypothesis by Bernad et al. [Bernad, A., Blanco, L., Lazaro, J.M., Martin, G. & Salas, M. (1989) Cell 59, 219-228] that many DNA polymerases, including T4 DNA polymerase, share an extensively conserved 3'----5' exonuclease motif. Therefore, extrapolation from E. coli DNA polymerase I sequence and structure to other DNA polymerases for which there is no structural information may not be valid.
Similar articles
-
Amino acid sequence motifs essential to 3'-->5' exonuclease activity of Escherichia coli DNA polymerase II.J Biol Chem. 1994 May 20;269(20):14655-60. J Biol Chem. 1994. PMID: 8182073
-
Construction and characterization of a bacteriophage T4 DNA polymerase deficient in 3'-->5' exonuclease activity.Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2579-83. doi: 10.1073/pnas.90.7.2579. Proc Natl Acad Sci U S A. 1993. PMID: 8464864 Free PMC article.
-
Are there highly conserved DNA polymerase 3'----5' exonuclease motifs?Gene. 1992 Mar 1;112(1):133-7. doi: 10.1016/0378-1119(92)90315-g. Gene. 1992. PMID: 1551593
-
The proofreading 3'-->5' exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis.Mutat Res. 2002 Dec 29;510(1-2):45-54. doi: 10.1016/s0027-5107(02)00251-8. Mutat Res. 2002. PMID: 12459442 Review.
-
DNA polymerase of the T4-related bacteriophages.Prog Nucleic Acid Res Mol Biol. 2000;64:65-96. doi: 10.1016/s0079-6603(00)64002-3. Prog Nucleic Acid Res Mol Biol. 2000. PMID: 10697407 Review.
Cited by
-
Bacteriophage T4 genome.Microbiol Mol Biol Rev. 2003 Mar;67(1):86-156, table of contents. doi: 10.1128/MMBR.67.1.86-156.2003. Microbiol Mol Biol Rev. 2003. PMID: 12626685 Free PMC article. Review.
-
Regulation of DNA polymerase exonucleolytic proofreading activity: studies of bacteriophage T4 "antimutator" DNA polymerases.Genetics. 1998 Apr;148(4):1551-7. doi: 10.1093/genetics/148.4.1551. Genetics. 1998. PMID: 9560374 Free PMC article. Review. No abstract available.
-
T4 DNA polymerase prevents deleterious on-target DNA damage and enhances precise CRISPR editing.EMBO J. 2024 Sep;43(17):3733-3751. doi: 10.1038/s44318-024-00158-6. Epub 2024 Jul 22. EMBO J. 2024. PMID: 39039289 Free PMC article.
-
Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics.PLoS Pathog. 2013 Aug;9(8):e1003565. doi: 10.1371/journal.ppat.1003565. Epub 2013 Aug 15. PLoS Pathog. 2013. PMID: 23966862 Free PMC article.
-
Effects of mutations in the Exo III motif of the herpes simplex virus DNA polymerase gene on enzyme activities, viral replication, and replication fidelity.J Virol. 1997 Oct;71(10):7791-8. doi: 10.1128/JVI.71.10.7791-7798.1997. J Virol. 1997. PMID: 9311864 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources