Above-bandgap voltages from ferroelectric photovoltaic devices
- PMID: 20062051
- DOI: 10.1038/nnano.2009.451
Above-bandgap voltages from ferroelectric photovoltaic devices
Abstract
In conventional solid-state photovoltaics, electron-hole pairs are created by light absorption in a semiconductor and separated by the electric field spaning a micrometre-thick depletion region. The maximum voltage these devices can produce is equal to the semiconductor electronic bandgap. Here, we report the discovery of a fundamentally different mechanism for photovoltaic charge separation, which operates over a distance of 1-2 nm and produces voltages that are significantly higher than the bandgap. The separation happens at previously unobserved nanoscale steps of the electrostatic potential that naturally occur at ferroelectric domain walls in the complex oxide BiFeO(3). Electric-field control over domain structure allows the photovoltaic effect to be reversed in polarity or turned off. This new degree of control, and the high voltages produced, may find application in optoelectronic devices.
Similar articles
-
Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe nanoparticles.Nano Lett. 2006 Aug;6(8):1789-93. doi: 10.1021/nl061085q. Nano Lett. 2006. PMID: 16895375
-
Photovoltaic and photoelectrochemical conversion of solar energy.Philos Trans A Math Phys Eng Sci. 2007 Apr 15;365(1853):993-1005. doi: 10.1098/rsta.2006.1963. Philos Trans A Math Phys Eng Sci. 2007. PMID: 17272237 Review.
-
Correlating structure with fluorescence emission in phase-separated conjugated-polymer blends.Nat Mater. 2003 Sep;2(9):616-21. doi: 10.1038/nmat959. Epub 2003 Aug 17. Nat Mater. 2003. PMID: 12923529
-
Depleted-heterojunction colloidal quantum dot solar cells.ACS Nano. 2010 Jun 22;4(6):3374-80. doi: 10.1021/nn100335g. ACS Nano. 2010. PMID: 20496882
-
Nanoscale optoelectronic switches and logic devices.Nanoscale. 2009 Dec;1(3):299-316. doi: 10.1039/b9nr00145j. Epub 2009 Oct 22. Nanoscale. 2009. PMID: 20648267 Review.
Cited by
-
Ferroelectric perovskite-type films with robust in-plane polarization toward efficient room-temperature chemiresistive sensing.Fundam Res. 2022 Jan 29;3(3):362-368. doi: 10.1016/j.fmre.2022.01.015. eCollection 2023 May. Fundam Res. 2022. PMID: 38933761 Free PMC article.
-
Concurrent bandgap narrowing and polarization enhancement in epitaxial ferroelectric nanofilms.Sci Technol Adv Mater. 2015 Apr 8;16(2):026002. doi: 10.1088/1468-6996/16/2/026002. eCollection 2015 Apr. Sci Technol Adv Mater. 2015. PMID: 27877779 Free PMC article.
-
Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review.Materials (Basel). 2014 Sep 12;7(9):6502-6568. doi: 10.3390/ma7096502. Materials (Basel). 2014. PMID: 28788198 Free PMC article. Review.
-
Anomalous photovoltaics in Janus MoSSe monolayers.Nat Commun. 2025 Jan 9;16(1):544. doi: 10.1038/s41467-024-55623-x. Nat Commun. 2025. PMID: 39788949 Free PMC article.
-
In-plane charged antiphase boundary and 180° domain wall in a ferroelectric film.Nat Commun. 2023 Dec 9;14(1):8174. doi: 10.1038/s41467-023-44091-4. Nat Commun. 2023. PMID: 38071396 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources