Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1967 Jun 1;6(6):1011-22.
doi: 10.1364/AO.6.001011.

The effects of scattering and mirror reflectivity on the performance of a ruby laser

Affiliations

The effects of scattering and mirror reflectivity on the performance of a ruby laser

J G Edwards. Appl Opt. .

Abstract

The output energy expected from a conventional ruby laser generator with plane parallel mirrors is calculated for a range of excitation energies, pulse lengths, mirror reflectivities and absorption, scattering and reflection losses. A linear dependence of output energy on excitation energy is expected only for a vanishingly small pulse length. The effects of localized losses such as those from reflections at the ends of the crystal are similar to scattering losses distributed through the crystal. The output mirror reflectivity giving maximum output energy falls as the excitation energy and scattering increase but is typically 50-60%. The reduction in output caused by scattering is less for lower reflectivities. The angular distribution of light scattered from the ruby when lasing is measured by varying the resonator length to assess the scattering. The predictions of output energy are in good agreement with experiment for all the excitation energies, introduced scattering losses, and mirror reflectivities tri d, except that above 70% reflectivity the prediction is up to 60% low. Possible reasons for this discrepancy are discussed. It was also found experimentally that the resonances between the ends of the ruby are suppressed when lasing, probably due to the optical inhomogeneities produced by the refractive index changes associated with the population changes during a laser spike. The output energy is thus reduced when the ends are not aligned in the resonator. These dynamic inhomogeneities are thought to override any static inhomogeneities already present in the crystal and are a major source of resonator loss.

PubMed Disclaimer

Similar articles