Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 1;127(7):1507-16.
doi: 10.1002/ijc.25159.

RNAi-mediated downregulation of uPAR synergizes with targeting of HER2 through the ERK pathway in breast cancer cells

Affiliations

RNAi-mediated downregulation of uPAR synergizes with targeting of HER2 through the ERK pathway in breast cancer cells

Changfei Li et al. Int J Cancer. .

Abstract

Overexpression of urokinase plasminogen activator receptor (uPAR) or HER2 (erbB-2) in breast cancer is associated with a poor prognosis. We previously reported that gene amplification and overexpression of HER2 and uPAR occur in 70% of HER2-amplified tumor cells from blood or tissue of patients with breast cancer. In this study, we first examined whether depletion of HER2 and uPAR synergized in suppression of the growth of breast cancer cells that overexpress both HER2 and uPAR (SKBR3 and ZR 751). The results showed that depletion of either HER2 or uPAR by RNA interference suppressed cell growth and induced cell apoptosis, but that these effects were significantly enhanced in cells depleted of both HER2 and uPAR. Mechanistic analysis demonstrated that silencing of HER2 and uPAR caused suppression of MAPK signal pathways, resulting in decrease of ERK activity and prompting a high p38/ERK activity ratio. The level of the phosphorylated form of ERK was decreased in cells depleted of HER2, uPAR or both, and the effect in cells depleted of both is the most evident. Moreover, downregulation of uPAR synergized with trastuzumab to suppress the growth and induce apoptosis of SKBR3 and ZR 751 cells. uPAR RNAi significantly enhanced the effect of trastuzumab on inhibition of MAPK signal pathways. In conclusion, targeting HER2 and uPAR has a synergistic inhibitory effect on breast cancer cells. Our results provide evidence that simultaneous downregulation of HER2 and uPAR may offer an effective tool for breast cancer therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms