Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 1;5(2):278-84.
doi: 10.1002/asia.200900433.

Morphological stable spirobifluorene/oxadiazole hybrids as bipolar host materials for efficient green and red electrophosphorescence

Affiliations

Morphological stable spirobifluorene/oxadiazole hybrids as bipolar host materials for efficient green and red electrophosphorescence

Youtian Tao et al. Chem Asian J. .

Abstract

A series of 9,9'-spirobifluorene/oxadiazole hybrids with various linkages between two components, namely SBF-p-OXD (1), SBF-m-OXD (2), and SBF-o-OXD (3) are designed and synthesized through Suzuki cross-coupling reactions. The incorporation of a rigid and bulky spirobifluorene moiety greatly improves their thermal and morphological stability, with T(d) (decomposition temperature) and T(g) (glass transition temperature) in the ranges of 401-480 degrees C and 136-210 degrees C, respectively. 2 and 3 with meta- and ortho-linkage display higher triplet energy and blue-shifted absorption and emission than their para-linked analogue 1 owing to the decreasing pi-conjugation between the two components. Their HOMO and LUMO energy levels depend on the linkage modes within the range of 5.57-5.64 eV and 2.33-2.49 eV, respectively. Multilayer deep red electrophosphorescent devices with 1-3 as hosts were fabricated and their EL efficiencies follow the order of 3 (o)>2 (m)>1 (p), which correlates with their triplet energy and the separation of HOMO and LUMO distributions at molecular orbitals. The maximum external quantum efficiencies of 11.7% for green and 9.8% for deep red phosphorescent organic light-emitting diodes (OLEDs) are achieved by using 2 and 3 as host materials, respectively.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources