Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr;46(4):964-9.
doi: 10.1016/j.bone.2010.01.002. Epub 2010 Jan 11.

Neuromuscular performance and body mass as indices of bone loading in premenopausal and postmenopausal women

Affiliations

Neuromuscular performance and body mass as indices of bone loading in premenopausal and postmenopausal women

Timo Rantalainen et al. Bone. 2010 Apr.

Abstract

The strong association between body mass and skeletal robusticity has been attributed to increasing skeletal loading with increasing mass. However, it is unclear whether body mass is merely a coarse substitute for bone loading rather than a true independent predictor of bone strength. As indices of neuromuscular performance, impulse and peak power were determined from vertical ground reaction force during a maximal counter movement jump test in 221 premenopausal and 82 postmenopausal women. Bone compressive (BSI(d) g(2)/cm(4)) and bending (SSImax(mid) mm(3)) strength indices were measured with peripheral quantitative computed tomography (pQCT) at the distal ((d)) and midshaft ((mid)) sites of the tibia. A two-step forced regression model for predicting bone strength indices was constructed. Age, height and body mass were entered first, followed by impulse as an indicator of skeletal loading. The basic model explained 14% (P<0.001) of the variance in BSI(d) in the premenopausal group and 16% (P=0.004) in the postmenopausal group, and 32% (P<0.001) and 25% (P<0.001) of the variance in SSImax(nud) respectively. Entering impulse into the model increased the explanatory power by 9% (P<0.001) and 7% (P<0.001) for BSI(d) and by 8% (P<0.001) and 12% (P<0.001) for SSImax(mid). Furthermore, impulse replaced body mass as an independent significant factor explaining the variance in bone strength. These results indicate that neuromuscular performance should be measured and preferred over body mass in models predicting skeletal robusticity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms