Grass genome organization and evolution
- PMID: 20064738
- DOI: 10.1016/j.pbi.2009.12.005
Grass genome organization and evolution
Abstract
The genomes of five species belonging to the grass family have been fully sequenced and provide insight into the structural organization and evolution of grass genomes. Comparative analyses have shown that genes and repeats are organized differently in small genomes compared to large genomes. Small genomes show a clear partitioning between gene-rich euchromatic and gene-poor pericentromeric regions. This is far less the case in larger genomes because many repeats are also interspersed between single genes or small gene islands. This organizational pattern may enhance erosion of colinearity because of the inherent mutagenic effects of transposable elements. Factors contributing to genome diversification, which is not constant in either space or time, are rapid turnover of repeats, chromosomal rearrangements, gene loss or differentiation following gene duplication and potentially the creation of new genes from transposable element-acquired gene fragments.
Similar articles
-
Patterns in grass genome evolution.Curr Opin Plant Biol. 2007 Apr;10(2):176-81. doi: 10.1016/j.pbi.2007.01.010. Epub 2007 Feb 8. Curr Opin Plant Biol. 2007. PMID: 17291821 Review.
-
Gene-containing regions of wheat and the other grass genomes.Plant Physiol. 2002 Mar;128(3):803-11. doi: 10.1104/pp.010745. Plant Physiol. 2002. PMID: 11891237 Free PMC article. Review.
-
The 'inner circle' of the cereal genomes.Curr Opin Plant Biol. 2009 Apr;12(2):119-25. doi: 10.1016/j.pbi.2008.10.011. Epub 2008 Dec 16. Curr Opin Plant Biol. 2009. PMID: 19095493 Review.
-
The evolution of grass genome organisation and function.Symp Soc Exp Biol. 1998;51:123-6. Symp Soc Exp Biol. 1998. PMID: 10645434
-
Morgane, a new LTR retrotransposon group, and its subfamilies in wheats.Genetica. 2006 Sep-Nov;128(1-3):439-47. doi: 10.1007/s10709-006-7725-5. Genetica. 2006. PMID: 17028971
Cited by
-
The origin of genetic and metabolic systems: Evolutionary structuralinsights.Heliyon. 2023 Mar 11;9(3):e14466. doi: 10.1016/j.heliyon.2023.e14466. eCollection 2023 Mar. Heliyon. 2023. PMID: 36967965 Free PMC article.
-
Karyotype structure and chromosome fragility in the grass Phleum echinatum Host.Protoplasma. 2015 Jan;252(1):301-6. doi: 10.1007/s00709-014-0681-5. Epub 2014 Jul 24. Protoplasma. 2015. PMID: 25056831 Free PMC article.
-
Evolutionary transitions in the Asteraceae coincide with marked shifts in transposable element abundance.BMC Genomics. 2015 Aug 20;16(1):623. doi: 10.1186/s12864-015-1830-8. BMC Genomics. 2015. PMID: 26290182 Free PMC article.
-
Genome analyses reveal population structure and a purple stigma color gene candidate in finger millet.Nat Commun. 2023 Jun 21;14(1):3694. doi: 10.1038/s41467-023-38915-6. Nat Commun. 2023. PMID: 37344528 Free PMC article.
-
Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis.Plant Physiol. 2011 Jun;156(2):674-86. doi: 10.1104/pp.111.173641. Epub 2011 Apr 6. Plant Physiol. 2011. PMID: 21474435 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources