Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code
- PMID: 20065048
- PMCID: PMC2849384
- DOI: 10.1128/AAC.00906-09
Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code
Abstract
We have defined a sensitivity profile for 22 antibiotics by extending previous work testing the entire KEIO collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to 1 of 14 different antibiotics (ciprofloxacin, rifampin [rifampicin], vancomycin, ampicillin, sulfamethoxazole, gentamicin, metronidazole, streptomycin, fusidic acid, tetracycline, chloramphenicol, nitrofurantoin, erythromycin, and triclosan). We screened one or more subinhibitory concentrations of each antibiotic, generating more than 80,000 data points and allowing a reduction of the entire collection to a set of 283 strains that display significantly increased sensitivity to at least one of the antibiotics. We used this reduced set of strains to determine a profile for eight additional antibiotics (spectinomycin, cephradine, aztreonem, colistin, neomycin, enoxacin, tobramycin, and cefoxitin). The profiles for the 22 antibiotics represent a growing catalog of sensitivity fingerprints that can be separated into two components, multidrug-resistant mutants and those mutants that confer relatively specific sensitivity to the antibiotic or type of antibiotic tested. The latter group can be represented by a set of 20 to 60 strains that can be used for the rapid typing of antibiotics by generating a virtual bar code readout of the specific sensitivities. Taken together, these data reveal the complexity of intrinsic resistance and provide additional targets for the design of codrugs (or combinations of drugs) that potentiate existing antibiotics.
Figures






Similar articles
-
Determination of antibiotic hypersensitivity among 4,000 single-gene-knockout mutants of Escherichia coli.J Bacteriol. 2008 Sep;190(17):5981-8. doi: 10.1128/JB.01982-07. Epub 2008 Jul 11. J Bacteriol. 2008. PMID: 18621901 Free PMC article.
-
Phenotypic and genotypic characterization of antimicrobial resistance in Escherichia coli O111 isolates.J Antimicrob Chemother. 2006 Jun;57(6):1210-4. doi: 10.1093/jac/dkl127. Epub 2006 Apr 7. J Antimicrob Chemother. 2006. PMID: 16603644
-
The contribution of common rpsL mutations in Escherichia coli to sensitivity to ribosome targeting antibiotics.Int J Med Microbiol. 2013 Dec;303(8):558-62. doi: 10.1016/j.ijmm.2013.07.006. Epub 2013 Jul 31. Int J Med Microbiol. 2013. PMID: 23972615
-
Effect of subinhibitory concentrations of antibiotics on intrachromosomal homologous recombination in Escherichia coli.Antimicrob Agents Chemother. 2009 Aug;53(8):3411-5. doi: 10.1128/AAC.00358-09. Epub 2009 Jun 1. Antimicrob Agents Chemother. 2009. PMID: 19487441 Free PMC article.
-
Selection for Antimicrobial Resistance in Foodborne Pathogens through Exposure to UV Light and Nonthermal Atmospheric Plasma Decontamination Techniques.Appl Environ Microbiol. 2020 Apr 17;86(9):e00102-20. doi: 10.1128/AEM.00102-20. Print 2020 Apr 17. Appl Environ Microbiol. 2020. PMID: 32111590 Free PMC article.
Cited by
-
Structure of Escherichia coli exonuclease VII.Proc Natl Acad Sci U S A. 2024 Jan 30;121(5):e2319644121. doi: 10.1073/pnas.2319644121. Epub 2024 Jan 25. Proc Natl Acad Sci U S A. 2024. PMID: 38271335 Free PMC article.
-
Polynucleotide phosphorylase plays an important role in the generation of spontaneous mutations in Escherichia coli.J Bacteriol. 2012 Oct;194(20):5613-20. doi: 10.1128/JB.00962-12. Epub 2012 Aug 17. J Bacteriol. 2012. PMID: 22904280 Free PMC article.
-
DNA Damage Repair and Drug Efflux as Potential Targets for Reversing Low or Intermediate Ciprofloxacin Resistance in E. coli K-12.Front Microbiol. 2018 Jul 2;9:1438. doi: 10.3389/fmicb.2018.01438. eCollection 2018. Front Microbiol. 2018. PMID: 30013537 Free PMC article.
-
Peptidoglycan hydrolase of an unusual cross-link cleavage specificity contributes to bacterial cell wall synthesis.Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7825-7830. doi: 10.1073/pnas.1816893116. Epub 2019 Apr 2. Proc Natl Acad Sci U S A. 2019. PMID: 30940749 Free PMC article.
-
Functional fine-tuning between bacterial DNA recombination initiation and quality control systems.PLoS One. 2018 Feb 22;13(2):e0192483. doi: 10.1371/journal.pone.0192483. eCollection 2018. PLoS One. 2018. PMID: 29470542 Free PMC article.
References
-
- Alekshun, M. N., and S. B. Levy.2007. Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037-1050. - PubMed
-
- Allington, D. R., and M. P. Rivey.2001. Quinupristin/dalfopristin: a therapeutic review. Clin. Ther. 23:24-44. - PubMed
-
- Amundsen, S. K., and G. R. Smith.2003. Interchangeable parts of the Escherichia coli recombinational machinery. Cell 112:741-744. - PubMed
-
- Andrews, J. M.2001. Determination of minimum inhibitory concentrations. Antimicrob. Agents Chemother. 48:5-16. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases