Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems
- PMID: 20066048
- PMCID: PMC2798956
- DOI: 10.1371/journal.pone.0008125
Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems
Abstract
ODE simulations of chemical systems perform poorly when some of the species have extremely low concentrations. Stochastic simulation methods, which can handle this case, have been impractical for large systems due to computational complexity. We observe, however, that when modeling complex biological systems: (1) a small number of reactions tend to occur a disproportionately large percentage of the time, and (2) a small number of species tend to participate in a disproportionately large percentage of reactions. We exploit these properties in LOLCAT Method, a new implementation of the Gillespie Algorithm. First, factoring reaction propensities allows many propensities dependent on a single species to be updated in a single operation. Second, representing dependencies between reactions with a bipartite graph of reactions and species requires only storage for reactions, rather than the required for a graph that includes only reactions. Together, these improvements allow our implementation of LOLCAT Method to execute orders of magnitude faster than currently existing Gillespie Algorithm variants when simulating several yeast MAPK cascade models.
Conflict of interest statement
Figures


References
-
- Gillespie D. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry. 1977;81:2309–2586.
-
- Cao Y, Li H, Petzold L. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. Journal of Physical Chemistry. 2004;121:4059–4067. - PubMed
-
- Gibson M, Bruck J. Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal of Physical Chemistry A. 2000;104:1876–1889.
-
- Indurkhya S, Beal J. Code for lolcat method. 2009. MIT Dspace: http://hdl.handle.net/1721.1/46710.
-
- Gillespie D, Petzold L. Improved leap-size selection for accelerated stochastic simulation. Journal of Chemical Physics. 2003;119:8229–8234.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases