Tumor suppressive functions of p53
- PMID: 20066118
- PMCID: PMC2773645
- DOI: 10.1101/cshperspect.a001883
Tumor suppressive functions of p53
Abstract
The majority of human cancers acquire mutations that abrogate the p53 tumor suppressor network and, as a consequence, p53 is one of the most extensively studied proteins in cancer research. Because of its potent tumor suppressive activity, it is widely assumed that a molecular understanding of p53 action will produce fundamental insights into natural processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. p53 functions largely as a transcription factor, and can trigger a variety of antiproliferative programs by activating or repressing key effector genes. Despite a significant body of literature detailing the biochemical and biological functions of p53, much remains to be elucidated. Indeed, the p53 network is as complex and enigmatic as it is relevant. It is the goal of this article, written 30 years after the discovery of p53, to present a concise review of the tumor suppressor role of the p53 network and to highlight the context-dependent nature of p53 target-gene functions.
References
-
- Appella E, Anderson CW 2001. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772 - PubMed
-
- Brown JP, Wei W, Sedivy JM 1997. Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834 - PubMed
-
- Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377:552–557 - PubMed
-
- Campisi J, d'Adda di Fagagna F 2007. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous