A review of automatic mass detection and segmentation in mammographic images
- PMID: 20071209
- DOI: 10.1016/j.media.2009.12.005
A review of automatic mass detection and segmentation in mammographic images
Abstract
The aim of this paper is to review existing approaches to the automatic detection and segmentation of masses in mammographic images, highlighting the key-points and main differences between the used strategies. The key objective is to point out the advantages and disadvantages of the various approaches. In contrast with other reviews which only describe and compare different approaches qualitatively, this review also provides a quantitative comparison. The performance of seven mass detection methods is compared using two different mammographic databases: a public digitised database and a local full-field digital database. The results are given in terms of Receiver Operating Characteristic (ROC) and Free-response Receiver Operating Characteristic (FROC) analysis.
Copyright 2009 Elsevier B.V. All rights reserved.
Similar articles
-
Influence of using manual or automatic breast density information in a mass detection CAD system.Acad Radiol. 2010 Jul;17(7):877-83. doi: 10.1016/j.acra.2010.04.013. Acad Radiol. 2010. PMID: 20540910
-
An evaluation of contrast enhancement techniques for mammographic breast masses.IEEE Trans Inf Technol Biomed. 2005 Mar;9(1):109-19. doi: 10.1109/titb.2004.837851. IEEE Trans Inf Technol Biomed. 2005. PMID: 15787013
-
A completely automated CAD system for mass detection in a large mammographic database.Med Phys. 2006 Aug;33(8):3066-75. doi: 10.1118/1.2214177. Med Phys. 2006. PMID: 16964885
-
A comparison of breast tissue classification techniques.Med Image Comput Comput Assist Interv. 2006;9(Pt 2):872-9. doi: 10.1007/11866763_107. Med Image Comput Comput Assist Interv. 2006. PMID: 17354855 Review.
-
CADx of mammographic masses and clustered microcalcifications: a review.Med Phys. 2009 Jun;36(6):2052-68. doi: 10.1118/1.3121511. Med Phys. 2009. PMID: 19610294 Review.
Cited by
-
An Artificial Intelligence-Based Tool for Enhancing Pectoral Muscle Segmentation in Mammograms: Addressing Class Imbalance and Validation Challenges in Automated Breast Cancer Diagnosis.Diagnostics (Basel). 2024 Sep 26;14(19):2144. doi: 10.3390/diagnostics14192144. Diagnostics (Basel). 2024. PMID: 39410548 Free PMC article.
-
Detection of cancerous masses in mammograms by template matching: optimization of template brightness distribution by means of evolutionary algorithm.J Digit Imaging. 2012 Feb;25(1):162-72. doi: 10.1007/s10278-011-9402-1. J Digit Imaging. 2012. PMID: 21748410 Free PMC article.
-
CT radiomics to predict pathologic complete response after neoadjuvant immunotherapy plus chemoradiotherapy in locally advanced esophageal squamous cell carcinoma.Eur Radiol. 2025 Mar;35(3):1594-1604. doi: 10.1007/s00330-024-11141-4. Epub 2024 Oct 29. Eur Radiol. 2025. PMID: 39470794
-
Consistent performance measurement of a system to detect masses in mammograms based on blind feature extraction.Biomed Eng Online. 2013 Jan 10;12:2. doi: 10.1186/1475-925X-12-2. Biomed Eng Online. 2013. PMID: 23305491 Free PMC article.
-
A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms.Biomed Res Int. 2020 May 11;2020:7695207. doi: 10.1155/2020/7695207. eCollection 2020. Biomed Res Int. 2020. PMID: 32462017 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical