Accumulation of evidence during sequential decision making: the importance of top-down factors
- PMID: 20071538
- PMCID: PMC6632985
- DOI: 10.1523/JNEUROSCI.4080-09.2010
Accumulation of evidence during sequential decision making: the importance of top-down factors
Abstract
In the last decade, great progress has been made in characterizing the accumulation of neural information during simple unitary perceptual decisions. However, much less is known about how sequentially presented evidence is integrated over time for successful decision making. The aim of this study was to study the mechanisms of sequential decision making in humans. In a magnetoencephalography (MEG) study, we presented healthy volunteers with sequences of centrally presented arrows. Sequence length varied between one and five arrows, and the accumulated directions of the arrows informed the subject about which hand to use for a button press at the end of the sequence (e.g., LRLRR should result in a right-hand press). Mathematical modeling suggested that nonlinear accumulation was the rational strategy for performing this task in the presence of no or little noise, whereas quasilinear accumulation was optimal in the presence of substantial noise. MEG recordings showed a correlate of evidence integration over parietal and central cortex that was inversely related to the amount of accumulated evidence (i.e., when more evidence was accumulated, neural activity for new stimuli was attenuated). This modulation of activity likely reflects a top-down influence on sensory processing, effectively constraining the influence of sensory information on the decision variable over time. The results indicate that, when making decisions on the basis of sequential information, the human nervous system integrates evidence in a nonlinear manner, using the amount of previously accumulated information to constrain the accumulation of additional evidence.
Figures







References
-
- Bastiaansen MC, Knösche TR. Tangential derivative mapping of axial MEG applied to event-related desynchronization research. Clin Neurophysiol. 2000;111:1300–1305. - PubMed
-
- Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7:1129–1159. - PubMed
-
- Bullier J, Nowak LG. Parallel versus serial processing: new vistas on the distributed organization of the visual system. Curr Opin Neurobiol. 1995;5:497–503. - PubMed
-
- Cisek P, Kalaska JF. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron. 2005;45:801–814. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources