Epigenetic regulation of Kaposi's sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway
- PMID: 20071580
- PMCID: PMC2826065
- DOI: 10.1128/JVI.01997-09
Epigenetic regulation of Kaposi's sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a cluster of 12 microRNAs (miRNAs) that are processed from a transcript that is embedded within the major latency control region. We have generated a deletion mutation that eliminates 10 of the 12 viral miRNAs from the KSHV bacmid by using recombineering methods. The KSHV miRNA deletion mutant (BAC36 DeltamiR) behaved similarly to wild-type (wt) BAC36 in viral production, latency gene transcription, and viral DNA copy number in 293 and dermal microvascular endothelial cells (DMVECs). However, BAC36 DeltamiR consistently expressed elevated levels of viral lytic genes, including the immediate-early transcriptional activator Rta (ORF50). At least one KSHV microRNA (miRK12-5) was capable of suppressing ORF50 mRNA, but poor seed sequence alignments suggest that these targets may be indirect. Comparison of epigenetic marks in DeltamiR KSHV genomes revealed decreases in histone H3 K9 methylation, increases in histone H3 acetylation, and a striking loss of DNA methylation throughout the viral and cellular genome. One viral miRNA, K12-4-5p, was found to have a sequence targeting retinoblastoma (Rb)-like protein 2 (Rbl2), which is a known repressor of DNA methyl transferase 3a and 3b mRNA transcription. We show that ectopic expression of miR-K12-4-5p reduces Rbl2 protein expression and increases DNMT1, -3a, and -3b mRNA levels relative to the levels for control cells. We conclude that KSHV miRNA targets multiple pathways to maintain the latent state of the KSHV genome, including repression of the viral immediate-early protein Rta and a cellular factor, Rbl2, that regulates global epigenetic reprogramming.
Figures






References
-
- Ballestas, M. E., P. A. Chatis, and K. M. Kaye. 1999. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284:641-644. - PubMed
-
- Benetti, R., S. Gonzalo, I. Jaco, P. Munoz, S. Gonzalez, S. Schoeftner, E. Murchison, T. Andl, T. Chen, P. Klatt, E. Li, M. Serrano, S. Millar, G. Hannon, and M. A. Blasco. 2008. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat. Struct. Mol. Biol. 15:268-279. - PMC - PubMed
-
- Buhler, M., and D. Moazed. 2007. Transcription and RNAi in heterochromatic gene silencing. Nat. Struct. Mol. Biol. 14:1041-1048. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources