In vivo endoscopic multi-beam optical coherence tomography
- PMID: 20071753
- DOI: 10.1088/0031-9155/55/3/004
In vivo endoscopic multi-beam optical coherence tomography
Abstract
A multichannel optical coherence tomography (multi-beam OCT) system and an in vivo endoscopic imaging probe were developed using a swept-source OCT system. The distal optics were micro-machined to produce a high numerical aperture, multi-focus fibre optic array. This combination resulted in a transverse design resolution of <10 microm full width half maximum (FWHM) throughout the entire imaging range, while also increasing the signal intensity within the focus of the individual channels. The system was used in a pre-clinical rabbit study to acquire in vivo structural images of the colon and ex vivo images of the oesophagus and trachea. A good correlation between the structural multi-beam OCT images and H&E histology was achieved, demonstrating the feasibility of this high-resolution system and its potential for in vivo human endoscopic imaging.
Similar articles
-
Ultrahigh resolution optical coherence tomography of Barrett's esophagus: preliminary descriptive clinical study correlating images with histology.Endoscopy. 2007 Jul;39(7):599-605. doi: 10.1055/s-2007-966648. Endoscopy. 2007. PMID: 17611914
-
Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography.Rev Sci Instrum. 2007 Nov;78(11):113102. doi: 10.1063/1.2804112. Rev Sci Instrum. 2007. PMID: 18052460
-
In vivo endoscopic optical coherence tomography of the human gastrointestinal tract--toward optical biopsy.Endoscopy. 2000 Oct;32(10):743-9. doi: 10.1055/s-2000-7711. Endoscopy. 2000. PMID: 11068832
-
Optical coherence tomography in gastroenterology: a review and future outlook.J Biomed Opt. 2017 Dec;22(12):1-17. doi: 10.1117/1.JBO.22.12.121716. J Biomed Opt. 2017. PMID: 29260538 Review.
-
Ultrathin endoscopes based on multicore fibers and adaptive optics: a status review and perspectives.J Biomed Opt. 2016 Dec 1;21(12):121506. doi: 10.1117/1.JBO.21.12.121506. J Biomed Opt. 2016. PMID: 27722748 Review.
Cited by
-
Computed Optical Interferometric Imaging: Methods, Achievements, and Challenges.IEEE J Sel Top Quantum Electron. 2016 May-Jun;22(3):6800911. doi: 10.1109/JSTQE.2015.2493962. Epub 2015 Nov 2. IEEE J Sel Top Quantum Electron. 2016. PMID: 27795663 Free PMC article.
-
Advanced Imaging for Barrett's Esophagus and Early Neoplasia: Surface and Subsurface Imaging for Diagnosis and Management.Curr Gastroenterol Rep. 2018 Oct 9;20(12):54. doi: 10.1007/s11894-018-0661-6. Curr Gastroenterol Rep. 2018. PMID: 30302571 Review.
-
Flexible method for generating needle-shaped beams and its application in optical coherence tomography.Optica. 2022 Aug 20;9(8):859-867. doi: 10.1364/optica.456894. Epub 2022 Jul 22. Optica. 2022. PMID: 37283722 Free PMC article.
-
Nano-optic endoscope for high-resolution optical coherence tomography in vivo.Nat Photonics. 2018 Sep;12(9):540-547. doi: 10.1038/s41566-018-0224-2. Epub 2018 Jul 30. Nat Photonics. 2018. PMID: 30713581 Free PMC article.
-
Real-time in vivo computed optical interferometric tomography.Nat Photonics. 2013 Jun 1;7(6):444-448. doi: 10.1038/nphoton.2013.71. Nat Photonics. 2013. PMID: 23956790 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources