Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb 10;132(5):1460-1.
doi: 10.1021/ja908784b.

Quantum dot FRET-based probes in thin films grown in microfluidic channels

Affiliations

Quantum dot FRET-based probes in thin films grown in microfluidic channels

Georgeta Crivat et al. J Am Chem Soc. .

Abstract

This paper describes the development of new fluorescence resonance energy transfer (FRET)-based quantum dot probes for proteolytic activity. The CdSe/ZnS quantum dots are incorporated into a thin polymeric film, which is prepared by layer-by-layer deposition of alternately charged polyelectrolytes. The quantum dots, which serve as fluorescent donors, are separated from rhodamine acceptor molecules, which are covalently attached to the film surface by a varying number of polyelectrolyte layers. When excited with visible light, the emission color of the polyelectrolyte multilayer film appears orange due to FRET between the quantum dots and molecular acceptors. The emission color changes to green when the rhodamine molecules are removed from the surface by enzymatic cleavage. The new probe design enables the use of quantum dots in bioassays, in this study for real-time monitoring of trypsin activity, while alleviating concerns about their potential toxicity. Application of these quantum dot FRET-based probes in microfluidic channels enables bioanalysis of volume-limited samples and single-cell studies in an in vivo-like environment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources