Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Feb;38(Pt 1):181-6.
doi: 10.1042/BST0380181.

Intersectin 1: a versatile actor in the synaptic vesicle cycle

Affiliations
Review

Intersectin 1: a versatile actor in the synaptic vesicle cycle

Arndt Pechstein et al. Biochem Soc Trans. 2010 Feb.

Abstract

During neurotransmitter release, SVs (synaptic vesicles) fuse at the active zone and are recovered predominantly via clathrin-mediated endocytosis at the presynaptic compartment surrounding the site of release, referred to as the periactive zone. Exo- and endo-cytosis in synapses are tightly temporarily and spatially coupled to sustain synaptic transmission. The molecular mechanisms linking these two cellular events, which take place in separate compartments of the nerve terminal, remain largely enigmatic. Several lines of evidence indicate that multiple factors may be involved in exocytic-endocytic coupling including SV integral membrane proteins, SV membrane lipids and the membrane-associated actin cytoskeleton. A number of recent studies also indicate that multimodular adaptor proteins shuttling between the active and periactive zones aid the dynamic assembly of macromolecular protein complexes that execute the exo- and endo-cytic limbs of the SV cycle. Here, we discuss recent evidence implicating the multidomain scaffolding and adaptor protein ITSN1 (intersectin 1) as a central regulator of SV cycling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources