Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 14;166(4):1158-66.
doi: 10.1016/j.neuroscience.2010.01.008. Epub 2010 Jan 13.

Platelet-activating factor-induced synaptic facilitation is associated with increased calcium/calmodulin-dependent protein kinase II, protein kinase C and extracellular signal-regulated kinase activities in the rat hippocampal CA1 region

Affiliations

Platelet-activating factor-induced synaptic facilitation is associated with increased calcium/calmodulin-dependent protein kinase II, protein kinase C and extracellular signal-regulated kinase activities in the rat hippocampal CA1 region

S Moriguchi et al. Neuroscience. .

Abstract

Platelet-activating factor (PAF) is an important inflammatory lipid mediator affecting neural plasticity. In the present study, we demonstrated how PAF affects synaptic efficacy through activation of protein kinases in the rat hippocampal CA1 region. In cultured hippocampal neurons, 10 to 1000 nM PAF stimulated autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) and phosphorylation of synapsin I and myristoylated alanine-rich protein kinase C substrate (MARCKS). In hippocampal CA1 slices, field excitatory postsynaptic potentials (fEPSPs) induced by stimulation of the Schaffer collateral/commissural pathways were significantly increased 10-50 min after exposure to 100 to 1000 nM PAF. Immunoblotting analysis showed that 100 nM PAF treatment for 10 or 50 min significantly and persistently increased CaMKII autophosphorylation in the hippocampal CA1 region. Increased protein kinase Calpha (PKCalpha) autophosphorylation was also seen at the same time point after PAF exposure. By contrast, extracellular signal-regulated kinase (ERK) phosphorylation was slightly but significantly increased at 10 min after PAF exposure. Consistent with increased CaMKII autophosphorylation, AMPA-type glutamate receptor subunit 1 (GluR1) (Ser-831) phosphorylation as a CaMKII postsynaptic substrate significantly increased after 10 or 50 min of treatment, whereas synapsin I (Ser-603) phosphorylation as a presynaptic substrate increased at 10 min in the hippocampal CA1 region. Phosphorylation of MARCKS (Ser-152/156) and NMDA receptor subunit 1 (NR1) (Ser-896) as PKCalpha substrates also significantly increased after 10 min but had not further increased by 50 min in the CA1 region. Increased of fEPSPs induced by PAF treatment completely and/or partly inhibited by KN93 and/or U0126 treatment. These results suggest that PAF induces synaptic facilitation through activation of CaMKII, PKC and ERK in the hippocampal CA1 region.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances