Effect of ocean acidification on iron availability to marine phytoplankton
- PMID: 20075213
- DOI: 10.1126/science.1183517
Effect of ocean acidification on iron availability to marine phytoplankton
Abstract
The acidification caused by the dissolution of anthropogenic carbon dioxide (CO2) in the ocean changes the chemistry and hence the bioavailability of iron (Fe), a limiting nutrient in large oceanic regions. Here, we show that the bioavailability of dissolved Fe may decline because of ocean acidification. Acidification of media containing various Fe compounds decreases the Fe uptake rate of diatoms and coccolithophores to an extent predicted by the changes in Fe chemistry. A slower Fe uptake by a model diatom with decreasing pH is also seen in experiments with Atlantic surface water. The Fe requirement of model phytoplankton remains unchanged with increasing CO2. The ongoing acidification of seawater is likely to increase the Fe stress of phytoplankton populations in some areas of the ocean.
Comment in
-
Oceans. Iron and the carbon pump.Science. 2010 Feb 5;327(5966):654-5. doi: 10.1126/science.1186151. Science. 2010. PMID: 20133563 No abstract available.
Similar articles
-
Southern Ocean iron enrichment experiment: carbon cycling in high- and low-Si waters.Science. 2004 Apr 16;304(5669):408-14. doi: 10.1126/science.1089778. Science. 2004. PMID: 15087542
-
Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2.Nature. 2000 Oct 12;407(6805):730-3. doi: 10.1038/35037561. Nature. 2000. PMID: 11048716
-
A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom.Science. 2003 May 9;300(5621):958-61. doi: 10.1126/science.1082000. Science. 2003. PMID: 12738858
-
Marine siderophores and microbial iron mobilization.Biometals. 2005 Aug;18(4):369-74. doi: 10.1007/s10534-005-3711-0. Biometals. 2005. PMID: 16158229 Review.
-
Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions.Science. 2007 Feb 2;315(5812):612-7. doi: 10.1126/science.1131669. Science. 2007. PMID: 17272712 Review.
Cited by
-
Unravelling Metal Speciation in the Microenvironment Surrounding Phytoplankton Cells to Improve Predictions of Metal Bioavailability.Environ Sci Technol. 2020 Jul 7;54(13):8177-8185. doi: 10.1021/acs.est.9b07773. Epub 2020 Jun 24. Environ Sci Technol. 2020. PMID: 32539359 Free PMC article.
-
Iron utilization in marine cyanobacteria and eukaryotic algae.Front Microbiol. 2012 Mar 7;3:43. doi: 10.3389/fmicb.2012.00043. eCollection 2012. Front Microbiol. 2012. PMID: 22408637 Free PMC article.
-
Scenedesnus rotundus isolated from the petroleum effluent employs alternate mechanisms of tolerance to elevated levels of Cadmium and Zinc.Sci Rep. 2019 Jun 11;9(1):8485. doi: 10.1038/s41598-019-44374-1. Sci Rep. 2019. PMID: 31186431 Free PMC article.
-
Harmful algal blooms and climate change: Learning from the past and present to forecast the future.Harmful Algae. 2015 Nov 1;49:68-93. doi: 10.1016/j.hal.2015.07.009. Epub 2015 Sep 22. Harmful Algae. 2015. PMID: 27011761 Free PMC article.
-
From the Ocean to the Lab-Assessing Iron Limitation in Cyanobacteria: An Interface Paper.Microorganisms. 2020 Nov 29;8(12):1889. doi: 10.3390/microorganisms8121889. Microorganisms. 2020. PMID: 33260337 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources