Bayesian Calibration of Microsimulation Models
- PMID: 20076767
- PMCID: PMC2805837
- DOI: 10.1198/jasa.2009.ap07466
Bayesian Calibration of Microsimulation Models
Abstract
Microsimulation models that describe disease processes synthesize information from multiple sources and can be used to estimate the effects of screening and treatment on cancer incidence and mortality at a population level. These models are characterized by simulation of individual event histories for an idealized population of interest. Microsimulation models are complex and invariably include parameters that are not well informed by existing data. Therefore, a key component of model development is the choice of parameter values. Microsimulation model parameter values are selected to reproduce expected or known results though the process of model calibration. Calibration may be done by perturbing model parameters one at a time or by using a search algorithm. As an alternative, we propose a Bayesian method to calibrate microsimulation models that uses Markov chain Monte Carlo. We show that this approach converges to the target distribution and use a simulation study to demonstrate its finite-sample performance. Although computationally intensive, this approach has several advantages over previously proposed methods, including the use of statistical criteria to select parameter values, simultaneous calibration of multiple parameters to multiple data sources, incorporation of information via prior distributions, description of parameter identifiability, and the ability to obtain interval estimates of model parameters. We develop a microsimulation model for colorectal cancer and use our proposed method to calibrate model parameters. The microsimulation model provides a good fit to the calibration data. We find evidence that some parameters are identified primarily through prior distributions. Our results underscore the need to incorporate multiple sources of variability (i.e., due to calibration data, unknown parameters, and estimated parameters and predicted values) when calibrating and applying microsimulation models.
Similar articles
-
Sequentially calibrating a Bayesian microsimulation model to incorporate new information and assumptions.BMC Med Inform Decis Mak. 2022 Jan 12;22(1):12. doi: 10.1186/s12911-021-01726-0. BMC Med Inform Decis Mak. 2022. PMID: 35022005 Free PMC article.
-
Calibration and Validation of the Colorectal Cancer and Adenoma Incidence and Mortality (CRC-AIM) Microsimulation Model Using Deep Neural Networks.Med Decis Making. 2023 Aug;43(6):719-736. doi: 10.1177/0272989X231184175. Epub 2023 Jul 11. Med Decis Making. 2023. PMID: 37434445 Free PMC article.
-
Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models.Med Decis Making. 2024 Jul;44(5):543-553. doi: 10.1177/0272989X241255618. Epub 2024 Jun 10. Med Decis Making. 2024. PMID: 38858832 Free PMC article.
-
Calibrating Parameters for Microsimulation Disease Models: A Review and Comparison of Different Goodness-of-Fit Criteria.Med Decis Making. 2016 Jul;36(5):652-65. doi: 10.1177/0272989X16636851. Epub 2016 Mar 8. Med Decis Making. 2016. PMID: 26957567 Review.
-
Applications of Monte Carlo Simulation in Modelling of Biochemical Processes.In: Mode CJ, editor. Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science [Internet]. Rijeka (HR): InTech; 2011 Feb 28. Chapter 4. In: Mode CJ, editor. Applications of Monte Carlo Methods in Biology, Medicine and Other Fields of Science [Internet]. Rijeka (HR): InTech; 2011 Feb 28. Chapter 4. PMID: 28045483 Free Books & Documents. Review.
Cited by
-
CaliPro: A Calibration Protocol That Utilizes Parameter Density Estimation to Explore Parameter Space and Calibrate Complex Biological Models.Cell Mol Bioeng. 2020 Sep 15;14(1):31-47. doi: 10.1007/s12195-020-00650-z. eCollection 2021 Feb. Cell Mol Bioeng. 2020. PMID: 33643465 Free PMC article.
-
Evaluating Parameter Uncertainty in a Simulation Model of Cancer Using Emulators.Med Decis Making. 2019 May;39(4):405-413. doi: 10.1177/0272989X19837631. Epub 2019 Jun 10. Med Decis Making. 2019. PMID: 31179833 Free PMC article.
-
Incorporating calibrated model parameters into sensitivity analyses: deterministic and probabilistic approaches.Pharmacoeconomics. 2012 Feb 1;30(2):119-26. doi: 10.2165/11593360-000000000-00000. Pharmacoeconomics. 2012. PMID: 22149631
-
Sequentially calibrating a Bayesian microsimulation model to incorporate new information and assumptions.BMC Med Inform Decis Mak. 2022 Jan 12;22(1):12. doi: 10.1186/s12911-021-01726-0. BMC Med Inform Decis Mak. 2022. PMID: 35022005 Free PMC article.
-
An updated natural history model of cervical cancer: derivation of model parameters.Am J Epidemiol. 2014 Sep 1;180(5):545-55. doi: 10.1093/aje/kwu159. Epub 2014 Jul 31. Am J Epidemiol. 2014. PMID: 25081182 Free PMC article. Clinical Trial.
References
-
- American Cancer Society. Cancer Facts & Figures. 2008. available at http://www.cancer.org/docroot/stt/content/stt_1x_cancer_facts_and_figure....
-
- Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, Mandelblatt JS, Yakovlev AY, Habbema JDF, Feuer EJ. Effect of Screening and Adjuvant Therapy on Mortality From Breast Cancer. New England Journal of Medicine. 2005;353:1884–1892. - PubMed
-
- Blatt LJ. Polyps of the Colon and Rectum: Incidence and Distribution. Diseases of the Colon and Rectum. 1961;4:277–282.
-
- Bombi JA. Polyps of the Colon in Barcelona, Spain. Cancer. 1988;61:1472–1476. - PubMed
-
- Brooks SP, Gelman A. Alternative Methods for Monitoring Convergence of Iterative Simulations. Journal of Computational and Graphical Statistics. 1998;7:434–455.
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials