Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan;19(1):25-7.
doi: 10.1111/j.1365-294X.2009.04412.x.

Revolution in food web analysis and trophic ecology: diet analysis by DNA and stable isotope analysis

Affiliations

Revolution in food web analysis and trophic ecology: diet analysis by DNA and stable isotope analysis

L Carreon-Martinez et al. Mol Ecol. 2010 Jan.

Abstract

Characterization of energy flow in ecosystems is one of the primary goals of ecology, and the analysis of trophic interactions and food web dynamics is key to quantifying energy flow. Predator-prey interactions define the majority of trophic interactions and food web dynamics, and visual analysis of stomach, gut or fecal content composition is the technique traditionally used to quantify predator-prey interactions. Unfortunately such techniques may be biased and inaccurate due to variation in digestion rates (Sheppard & Hardwood 2005); however, those limitations can be largely overcome with new technology. In the last 20 years, the use of molecular genetic techniques in ecology has exploded (King et al. 2008). The growing availability of molecular genetic methods and data has fostered the use of PCR-based techniques to accurately distinguish and identify prey items in stomach, gut and fecal samples. In this month's issue of Molecular Ecology Resources, Corse et al. (2010) describe and apply a new approach to quantifying predator-prey relationships using an ecosystem-level genetic characterization of available and consumed prey in European freshwater habitats (Fig. 1a). In this issue of Molecular Ecology, Hardy et al. (2010) marry the molecular genetic analysis of prey with a stable isotope (SI) analysis of trophic interactions in an Australian reservoir community (Fig. 1b). Both papers demonstrate novel and innovative approaches to an old problem--how do we effectively explore food webs and energy movement in ecosystems?

PubMed Disclaimer

LinkOut - more resources