Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jan 15:11:38.
doi: 10.1186/1471-2164-11-38.

High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence

Affiliations

High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence

David L Hyten et al. BMC Genomics. .

Abstract

Background: The Soybean Consensus Map 4.0 facilitated the anchoring of 95.6% of the soybean whole genome sequence developed by the Joint Genome Institute, Department of Energy, but its marker density was only sufficient to properly orient 66% of the sequence scaffolds. The discovery and genetic mapping of more single nucleotide polymorphism (SNP) markers were needed to anchor and orient the remaining genome sequence. To that end, next generation sequencing and high-throughput genotyping were combined to obtain a much higher resolution genetic map that could be used to anchor and orient most of the remaining sequence and to help validate the integrity of the existing scaffold builds.

Results: A total of 7,108 to 25,047 predicted SNPs were discovered using a reduced representation library that was subsequently sequenced by the Illumina sequence-by-synthesis method on the clonal single molecule array platform. Using multiple SNP prediction methods, the validation rate of these SNPs ranged from 79% to 92.5%. A high resolution genetic map using 444 recombinant inbred lines was created with 1,790 SNP markers. Of the 1,790 mapped SNP markers, 1,240 markers had been selectively chosen to target existing unanchored or un-oriented sequence scaffolds, thereby increasing the amount of anchored sequence to 97%.

Conclusion: We have demonstrated how next generation sequencing was combined with high-throughput SNP detection assays to quickly discover large numbers of SNPs. Those SNPs were then used to create a high resolution genetic map that assisted in the assembly of scaffolds from the 8x whole genome shotgun sequences into pseudomolecules corresponding to chromosomes of the organism.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J. et al.Genome seqeunce of the paleopolyploid soybean. Nature. 2010;463:178–183. doi: 10.1038/nature08670. - DOI - PubMed
    1. Hyten DL, Choi I-Y, Song Q, Specht JE, Carter TE, Shoemaker RC, Hwang E-Y, Matukumalli LK, Cregan PB. A high density integrated genetic linkage map of soybean and the development of a 1,536 Universal Soy Linkage Panel for QTL mapping. Crop Sci. 2010. in press .
    1. Choi I-Y, Hyten DL, Matukumalli LK, Song Q, Chaky JM, Quigley CV, Chase K, Lark KG, Reiter RS, Yoon M-S. et al.A soybean transcript map: gene distribution, haplotype and single-nucleotide polymorphism analysis. Genetics. 2007;176(1):685–696. doi: 10.1534/genetics.107.070821. - DOI - PMC - PubMed
    1. Zhu YL, Song QJ, Hyten DL, Van Tassell CP, Matukumalli LK, Grimm DR, Hyatt SM, Fickus EW, Young ND, Cregan PB. Single-nucleotide polymorphisms in soybean. Genetics. 2003;163(3):1123–1134. - PMC - PubMed
    1. Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB. Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA. 2006;103(45):16666–16671. doi: 10.1073/pnas.0604379103. - DOI - PMC - PubMed

LinkOut - more resources