Chemical modification of Staphylococcus aureus alpha-toxin by diethylpyrocarbonate: role of histidines in its membrane-damaging properties
- PMID: 2008011
- DOI: 10.1007/BF01868539
Chemical modification of Staphylococcus aureus alpha-toxin by diethylpyrocarbonate: role of histidines in its membrane-damaging properties
Abstract
Staphylococcus aureus alpha-toxin causes cell damage by forming an amphiphilic hexamer that inserts into the cell membrane and generates a hydrophilic pore. To investigate the role of the three histidine residues of this toxin we modified them with diethylpyrocarbonate, obtaining N-carbethoxy-histidine whose appearance may be followed spectrophotometrically. Despite the statistical nature of random chemical modification, it was possible to establish that modification of any one of the three histidines was enough to impair alpha-toxin activity on red blood cells and platelets. Two out of three histidines were essential for the interaction of the toxin with model membranes such as lipid vesicles and planar bilayers. Loss of lytic activity in both natural and model membranes was due both to defective binding and to defective oligomerization. When alpha-toxin hexamers inserted into lipid vesicles were assayed for chemical modifiability two histidines per monomer were found to be protected from diethylpyrocarbonate modification, whereas only one was protected after delipidation of the oligomer with a detergent. A possible model for the role of each histidine in the monomer is presented.