Linking oxidative stress to inflammation: Toll-like receptors
- PMID: 20083193
- PMCID: PMC3423196
- DOI: 10.1016/j.freeradbiomed.2010.01.006
Linking oxidative stress to inflammation: Toll-like receptors
Abstract
Injury caused by oxidative stress occurs in many clinical scenarios involving ischemia and reperfusion such as organ transplantation, hemorrhagic shock (HS), myocardial infarction, and cerebral vascular accidents. Activation of the immune system as a result of disturbances in the redox state of cells seems to contribute to tissue and organ damage in these conditions. The link between oxidative stress and inflammatory pathways is poorly understood. Recently, Toll-like receptors (TLRs) have been shown to mediate the inflammatory response seen in experimental ischemia and reperfusion (I/R). The TLR family of receptors involved in alerting the innate immune system of danger seems to be activated by damage-associated molecular pattern molecules (DAMPs) that are released during conditions of oxidative stress. In this review, we examine the role of TLRs in various experimental models of oxidative stress such as HS and I/R. We also report on potential DAMPs that may interact with TLRs in mediating injury. Finally, potential mechanisms by which reactive oxygen species from NADPH oxidase can signal the commencement of inflammatory pathways through TLRs are explored.
(c) 2009 Elsevier Inc. All rights reserved.
Figures
References
-
- Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–83. - PubMed
-
- Janeway CA., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13. - PubMed
-
- Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249:1431–3. - PubMed
-
- Medzhitov R, Preston-Hurlburt P, Janeway CA., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–7. - PubMed
-
- Poltorak A, He X, Smirnova I, Liu MY, Van HC, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
