Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun 1;86(3):506-15.
doi: 10.1093/cvr/cvq012. Epub 2010 Jan 18.

Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny

Affiliations

Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny

Jan-Renier A J Moonen et al. Cardiovasc Res. .

Abstract

Aims: Reciprocal plasticity exists between endothelial and mesenchymal lineages. For instance, mature endothelial cells adopt a smooth muscle-like phenotype through transforming growth factor beta-1 (TGFbeta1)-driven endothelial-to-mesenchymal transdifferentiation (EndMT). Peripheral blood contains circulating endothelial progenitor cells of which the endothelial colony-forming cells (ECFCs) harbour stem cell-like properties. Given the plasticity between endothelial and mesenchymal lineages and the stem cell-like properties of ECFCs, we hypothesized that ECFCs can give rise to smooth muscle-like progeny.

Methods and results: ECFCs were stimulated with TGFbeta1, after which TGFbeta signalling cascades and their downstream effects were investigated. Indeed, EndMT of ECFCs resulted in smooth muscle-like progeniture. TGFbeta1-driven EndMT is mediated by ALK5 kinase activity, increased downstream Smad2 signalling, and reduced protein levels of inhibitor of DNA-binding protein 3. ECFCs lost expression of endothelial markers and endothelial anti-thrombogenic function. Simultaneously, mesenchymal marker expression was gained, cytoskeletal rearrangements occurred, and cells acquired a contractile phenotype. Transdifferentiated ECFCs were phenotypically stable and self-sustaining and, importantly, showed fibroblast growth factor-2 and angiopoietin-1-mediated pro-angiogenic paracrine properties.

Conclusion: Our study is the first to demonstrate that ECFCs can give rise to smooth muscle-like progeny, with potential therapeutic benefits. These findings further illustrate that ECFCs are highly plastic, which by itself has implications for therapeutical use.

PubMed Disclaimer

Publication types

MeSH terms