Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Feb;12(2):106-13.
doi: 10.1093/eurjhf/hfp191.

Functional effects of glucose transporters in human ventricular myocardium

Affiliations
Free article

Functional effects of glucose transporters in human ventricular myocardium

Dirk von Lewinski et al. Eur J Heart Fail. 2010 Feb.
Free article

Abstract

Aims: Insulin-dependent positive inotropic effects (PIE) are partially Ca(2+) independent. This mechanism is potentially glucose dependent. In contrast to most animal species, human myocardium expresses high levels of sodium-glucose-transporter-1 (SGLT-1) mRNA besides the common glucose-transporters-1 and -4 (GLUT1, GLUT4).

Methods and results: We used ventricular myocardium from 61 end-stage failing human hearts (ischaemic cardiomyopathy, ICM and dilated cardiomyopathy, DCM) and 13 non-failing donor hearts. The effect of insulin on isometric twitch force was examined with or without blocking of PI3-kinase, GLUT4-translocation, or SGLT-1. Substrate-dependent (glucose vs. pyruvate vs. palmitoyl-carnitine) effects were tested in atrial myocardium. mRNA expression of glucose transporters was analysed. Insulin increased developed force by 122 + or - 7.4, 121.7 + or - 2.5, and 134.1 + or - 5.7% in non-failing, DCM, and ICM (P < 0.05 vs. DCM), respectively. Positive inotropic effect was partially blunted by inhibition of PI-3-kinase, GLUT4, or SGLT1. Combined inhibition of PI3-kinase and glucose-transport completely abolished PIE. Positive inotropic effect was significantly stronger in glucose-containing solution compared with pyruvate or palmitoyl-carnitine containing. mRNA expression showed only a tendency towards elevated GLUT4-expression in ICM.

Conclusions: Positive inotropic effect of insulin is pronounced in ICM, but underlying mechanisms are unaltered. The Ca(2+)-independent PIE of insulin is mediated via glucose-transporters. Together with the Ca(2+)-dependent PI-3-kinase mediated pathway, it is responsible for the entire PIE. Substrate-dependency affirms a glucose-dependent part of the PIE.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms